Hyperspectral remote sensing technology for water quality monitoring: knowledge graph analysis and Frontier trend

被引:10
作者
Ma, Taquan [1 ]
Zhang, Donghui [2 ]
Li, Xusheng [3 ]
Huang, Yao [4 ]
Zhang, Lifu [4 ,5 ]
Zhu, Zhenchang [6 ]
Sun, Xuejian [4 ,5 ]
Lan, Ziyue [4 ]
Guo, Wei [7 ]
机构
[1] Chongqing Normal Univ, Coll Geog & Tourism, Chongqing, Peoples R China
[2] China Acad Space Technol, Inst Remote Sensing Satellite, Beijing, Peoples R China
[3] China Geol Survey, Tianjin Ctr Geol Survey, Tianjin, Peoples R China
[4] Tianjin Progoo Informat Technol Co Ltd, Progoo Res Inst, Tianjin, Peoples R China
[5] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing, Peoples R China
[6] Guangdong Univ Technol, Inst Environm & Ecol Engn, Guangdong Prov Key Lab Water Qual Improvement & Ec, Guangzhou, Peoples R China
[7] Shenzhen Intelligence Ally Technol Co Ltd, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperspectral remote sensing; water quality monitoring; knowledge graph analysis; VOSviewer; CiteSpace; Bibliometrics; CHLOROPHYLL-A CONCENTRATION; COMPACT IMAGING SPECTROMETER; TAIHU LAKE; REFLECTANCE ALGORITHMS; ALGAL BLOOMS; RIVER; IMAGERY; RETRIEVAL; VEGETATION; PHOSPHORUS;
D O I
10.3389/fenvs.2023.1133325
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Water environment health assessment is one of the vital fields closely related to the quality of human life. The change of material contained in water will lead to the reflectance change of hyperspectral remote sensing data. According to this phenomenon, the water quality parameters are calculated to achieve the purpose of water quality monitoring. Series knowledge graphs in this field are drawn after analyzing 564 publications from WOS (Web of Science) and EI (The Engineering Index) databases since 1994 with the support of VOSviewer and CiteSpace. Including statistics of documents publication time, contribution analysis, the influence of publications and journals, and the influence of funding institutions. It is concluded that the research trend of hyperspectral water quality monitoring is the machine learning algorithm based on UAV (Unmanned Aerial Vehicle) hyperspectral instrument data by analyzing scientific research cooperation, keyword analysis, and research hotspots. The whole picture of the research is obtained in this field from four subfields: application scenarios, data sources, water quality parameters, and monitoring algorithms in this paper. It is summarized that the miniaturization, integration, and intelligence of hyperspectral sensors will be the research trend in the next 10 years or even longer. The conclusions have significant reference values for this field.
引用
收藏
页数:19
相关论文
共 112 条
[1]   Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance [J].
Aasen, Helge ;
Burkart, Andreas ;
Bolten, Andreas ;
Bareth, Georg .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 108 :245-259
[2]   Hyperspectral and multispectral above-water radiometric measurements to monitor satellite data quality over coastal area [J].
Ahmed, Samir ;
Harmel, Tristan ;
Gilerson, Alexander ;
Hlaing, Soe ;
Tonizzo, Alberto ;
Davis, Curtiss ;
Weidemann, Alan ;
Arnone, Robert .
OCEAN SENSING AND MONITORING III, 2011, 8030
[3]   Predicting Cyanobacterial Blooms Using Hyperspectral Images in a Regulated River [J].
Ahn, Jung Min ;
Kim, Byungik ;
Jong, Jaehun ;
Nam, Gibeom ;
Park, Lan Joo ;
Park, Sanghyun ;
Kang, Taegu ;
Lee, Jae-Kwan ;
Kim, Jungwook .
SENSORS, 2021, 21 (02) :1-20
[4]   The impact of sea bottom effects on the retrieval of water constituent concentrations from MERIS and OLCI images in shallow tidal waters supported by radiative transfer modeling [J].
Arabi, Behnaz ;
Salama, Mhd. Suhyb ;
van der Wal, Daphne ;
Pitarch, Jaime ;
Verhoef, Wouter .
REMOTE SENSING OF ENVIRONMENT, 2020, 237
[5]   Implementation of a UAV-Hyperspectral Pushbroom Imager for Ecological Monitoring [J].
Arroyo-Mora, J. Pablo ;
Kalacska, Margaret ;
Inamdar, Deep ;
Soffer, Raymond ;
Lucanus, Oliver ;
Gorman, Janine ;
Naprstek, Tomas ;
Schaaf, Erica Skye ;
Ifimov, Gabriela ;
Elmer, Kathryn ;
Leblanc, George .
DRONES, 2019, 3 (01) :1-24
[6]   Analysis of MERIS Reflectance Algorithms for Estimating Chlorophyll-a Concentration in a Brazilian Reservoir [J].
Augusto-Silva, Petala B. ;
Ogashawara, Igor ;
Barbosa, Claudio C. F. ;
de Carvalho, Lino A. S. ;
Jorge, Daniel S. F. ;
Fornari, Celso Israel ;
Stech, Jose L. .
REMOTE SENSING, 2014, 6 (12) :11689-11707
[7]  
Barducci A, 1997, INT GEOSCI REMOTE SE, P888, DOI 10.1109/IGARSS.1997.615288
[8]   Comparison of satellite reflectance algorithms for estimating chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations [J].
Beck, Richard ;
Zhan, Shengan ;
Liu, Hongxing ;
Tong, Susanna ;
Yang, Bo ;
Xu, Min ;
Ye, Zhaoxia ;
Huang, Yan ;
Shu, Song ;
Wu, Qiusheng ;
Wang, Shujie ;
Berling, Kevin ;
Murray, Andrew ;
Emery, Erich ;
Reif, Molly ;
Harwood, Joseph ;
Young, Jade ;
Nietch, Christopher ;
Macke, Dana ;
Martin, Mark ;
Stillings, Garrett ;
Stump, Richard ;
Su, Haibin .
REMOTE SENSING OF ENVIRONMENT, 2016, 178 :15-30
[9]   Unmanned aerial system based spectroradiometer for monitoring harmful algal blooms: A new paradigm in water quality monitoring [J].
Becker, Richard H. ;
Sayers, Michael ;
Dehm, Dustin ;
Shuchman, Robert ;
Quintero, Kaydian ;
Bosse, Karl ;
Sawtell, Reid .
JOURNAL OF GREAT LAKES RESEARCH, 2019, 45 (03) :444-453
[10]   Mapping of several soil properties using DAIS-7915 hyperspectral scanner data - a case study over clayey soils in Israel [J].
Ben-Dor, E ;
Patkin, K ;
Banin, A ;
Karnieli, A .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2002, 23 (06) :1043-1062