BLOW-UP OF WEAK SOLUTIONS FOR A HIGHER-ORDER HEAT EQUATION WITH LOGARITHMIC NONLINEARITY

被引:0
作者
Comert, Tugrul [1 ]
Piskin, Erhan [1 ]
机构
[1] Dicle Univ, Dept Math, TR-21280 Diyarbakir, Turkiye
关键词
blow-up; heat equation; higher-order; logarithmic nonlinearity; nehari functional; weak solutions; PARABOLIC EQUATION; EXISTENCE;
D O I
10.18514/MMN.2023.4014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deal with the initial boundary value problem for a higher-order heat equation with logarithmic source term ut + (-& UDelta;)mu -& UDelta;ut = uk-2u ln |u|. We obtain blow-up of weak solutions in the finite time, by employing potential well technique and concave technique. In addition, the upper bound of blow-up time is considered. This improves and extends some previous studies.
引用
收藏
页码:749 / 762
页数:14
相关论文
共 18 条
[1]  
Adams RA., 2003, Sobolev Spaces
[2]   A double-logarithmically improved regularity criterion of weak solutions for the 3D MHD equations [J].
Ben Omrane, Ines ;
Gala, Sadek ;
Ragusa, Maria Alessandra .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (03)
[3]   Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity [J].
Chen, Hua ;
Tian, Shuying .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (12) :4424-4442
[4]   Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity [J].
Chen, Hua ;
Luo, Peng ;
Liu, Gongwei .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (01) :84-98
[5]   TWO NEW BLOW-UP CONDITIONS FOR A PSEUDO-PARABOLIC EQUATION WITH LOGARITHMIC NONLINEARITY [J].
Ding, Hang ;
Zhou, Jun .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (05) :1285-1296
[6]   Uniqueness criterion of weak solutions for the dissipative quasi-geostrophic equations in Orlicz-Morrey spaces [J].
Gala, Sadek ;
Ragusa, Maria Alessandra ;
Sawano, Yoshihiro ;
Tanaka, Hitoshi .
APPLICABLE ANALYSIS, 2014, 93 (02) :356-368
[7]  
Galaktionov V. A., 2003, INT J MATH MATH SCI, P3809, DOI [10.1155/S0161171203210176, DOI 10.1155/S0161171203210176]
[8]   Blow-up at infinity of solutions to a semilinear heat equation with logarithmic nonlinearity [J].
Han, Yuzhu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 474 (01) :513-517
[9]   Existence of solutions for a higher-order semilinear parabolic equation with singular initial data [J].
Ishige, Kazuhiro ;
Kawakami, Tatsuki ;
Okabe, Shinya .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2020, 37 (05) :1185-1209
[10]  
kin E. Pis, 2013, J ADV RES APPL MATH, V5, P107