Positive solutions for a critical quasilinear Schrodinger equation

被引:0
作者
Xue, Liang [1 ]
Xu, Jiafa [2 ]
O'Regan, Donal [3 ]
机构
[1] Anhui Ind Polytech Coll, Dept Basic Courses, Tongling 244000, Peoples R China
[2] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
[3] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 08期
关键词
quasilinear Schrodinger equations; quasicritical growths; dual approaches; SOLITON-SOLUTIONS; EXISTENCE;
D O I
10.3934/math.2023998
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In our current work we investigate the following critical quasilinear Schrodinger equation-?T + V(x)T - ?(T-2)T = |T|T22*-2 + ?K(x)g(T),x ? R-N,where N = 3, ? > 0, V, K ? C(R-N, R+) and g ? C(R, R) has a quasicritical growth condition. We use the dual approach and the mountain pass theorem to show that the considered problem has a positive solution when ? is a large parameter.
引用
收藏
页码:19566 / 19581
页数:16
相关论文
共 30 条
[1]   Existence of solutions for a class of nonlinear Schrodinger equations with potential vanishing at infinity [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (04) :1977-1991
[2]  
Ambrosetti A, 2005, DIFFER INTEGRAL EQU, V18, P1321
[3]  
Ambrosetti A, 2005, J EUR MATH SOC, V7, P117
[4]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[5]   Soliton solutions for quasilinear Schrodinger equations with critical growth [J].
Bezerra do O, Joao M. ;
Miyagaki, Olimpio H. ;
Soares, Sergio H. M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (04) :722-744
[6]   Groundstates for the nonlinear Schrodinger equation with potential vanishing at infinity [J].
Bonheure, Denis ;
Van Schaftingen, Jean .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2010, 189 (02) :273-301
[7]   Existence and Concentration Behavior of Ground State Solutions for a Class of Generalized Quasilinear Schrodinger Equations in Double-struck capital RN [J].
Chen, Jianhua ;
Huang, Xianjiu ;
Cheng, Bitao ;
Tang, Xianhua .
ACTA MATHEMATICA SCIENTIA, 2020, 40 (05) :1495-1524
[8]   Existence of positive solutions for a class of quasilinear Schrodinger equations of Choquard type [J].
Chen, Shaoxiong ;
Wu, Xian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (02) :1754-1777
[9]   NECESSARY AND SUFFICIENT CONDITIONS FOR SELF-FOCUSING OF SHORT ULTRAINTENSE LASER-PULSE IN UNDERDENSE PLASMA [J].
CHEN, XL ;
SUDAN, RN .
PHYSICAL REVIEW LETTERS, 1993, 70 (14) :2082-2085
[10]   Solutions for a quasilinear Schrodinger equation: a dual approach [J].
Colin, M ;
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) :213-226