Development of an intelligent underwater recognition system based on the deep reinforcement learning algorithm in an autonomous underwater vehicle

被引:5
|
作者
Lin, Yu-Hsien [1 ]
Wu, Tsung-Lin [1 ]
Yu, Chao -Ming [1 ]
Wu, I. -Chen [2 ]
机构
[1] Natl Cheng Kung Univ, Dept Syst & Naval Mech Eng, Tainan 70101, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Dept Comp Sci, Hsinchu 30010, Taiwan
关键词
DQN; Deep reinforcement learning; SGBM; Stereo vision; 3D reconstruction;
D O I
10.1016/j.measurement.2023.112844
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study's objective was to design an intelligent underwater recognition system and apply it in an autonomous underwater vehicle (AUV) for the recognition and tracking of underwater objects. The intelligent underwater recognition system predicted the depth map with the stereo matching algorithm based on semi-global block matching (SGBM) through the images of voyage records. It used the Deep Q-Network (DQN) algorithm based on deep reinforcement learning so that the agent may focus on the localization area of objects on the disparity map. Next, the intelligent underwater recognition system performed depth estimation according to the disparity map to obtain the stereo point clouds of the underwater object. After obtaining the depth information, the intelligent underwater recognition system constructed a deep network based on Faster Region-based Convolutional Neural Network (R-CNN) to detect the underwater object. Eventually, the system was successfully verified by a series of diving-depth tracking experiments.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] The docking control system of an autonomous underwater vehicle combining intelligent object recognition and deep reinforcement learning
    Yu, Chao-Ming
    Lin, Yu-Hsien
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 139
  • [2] Dynamic Target Tracking of Autonomous Underwater Vehicle Based on Deep Reinforcement Learning
    Shi, Jiaxiang
    Fang, Jianer
    Zhang, Qizhong
    Wu, Qiuxuan
    Zhang, Botao
    Gao, Farong
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (10)
  • [3] Adaptive Navigation Algorithm with Deep Learning for Autonomous Underwater Vehicle
    Ma, Hui
    Mu, Xiaokai
    He, Bo
    SENSORS, 2021, 21 (19)
  • [4] Deep Interactive Reinforcement Learning for Path Following of Autonomous Underwater Vehicle
    Zhang, Qilei
    Lin, Jinying
    Sha, Qixin
    He, Bo
    Li, Guangliang
    IEEE ACCESS, 2020, 8 : 24258 - 24268
  • [5] Deep Reinforcement Learning for Vectored Thruster Autonomous Underwater Vehicle Control
    Liu, Tao
    Hu, Yuli
    Xu, Hui
    COMPLEXITY, 2021, 2021
  • [6] Reinforcement Learning Based Obstacle Avoidance for Autonomous Underwater Vehicle
    Prashant Bhopale
    Faruk Kazi
    Navdeep Singh
    Journal of Marine Science and Application, 2019, 18 : 228 - 238
  • [7] Deep Reinforcement Learning Based Optimal Trajectory Tracking Control of Autonomous Underwater Vehicle
    Yu, Runsheng
    Shi, Zhenyu
    Huang, Chaoxing
    Li, Tenglong
    Ma, Qiongxiong
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 4958 - 4965
  • [8] Evaluation of a Deep-Reinforcement-Learning-based Controller for the Control of an Autonomous Underwater Vehicle
    Sola, Yoann
    Chaffre, Thomas
    le Chenadec, Gilles
    Sammut, Karl
    Clement, Benoit
    GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST, 2020,
  • [9] Reinforcement Learning Based Obstacle Avoidance for Autonomous Underwater Vehicle
    Bhopale, Prashant
    Kazi, Faruk
    Singh, Navdeep
    JOURNAL OF MARINE SCIENCE AND APPLICATION, 2019, 18 (02) : 228 - 238
  • [10] Deep reinforcement learning for adaptive path planning and control of an autonomous underwater vehicle
    Hadi, Behnaz
    Khosravi, Alireza
    Sarhadi, Pouria
    APPLIED OCEAN RESEARCH, 2022, 129