Focalized contrastive view-invariant learning for self-supervised skeleton-based action recognition

被引:13
|
作者
Men, Qianhui [1 ,2 ]
Ho, Edmond S. L. [3 ]
Shum, Hubert P. H. [4 ]
Leung, Howard [1 ]
机构
[1] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[2] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
[3] Univ Glasgow, Sch Comp Sci, Glasgow G12 8RZ, Scotland
[4] Univ Durham, Dept Comp Sci, Durham DH1 3LE, England
关键词
Self -supervised learning; Skeleton -based action recognition; Contrastive learning;
D O I
10.1016/j.neucom.2023.03.070
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning view-invariant representation is a key to improving feature discrimination power for skeleton -based action recognition. Existing approaches cannot effectively remove the impact of viewpoint due to the implicit view-dependent representations. In this work, we propose a self-supervised framework called Focalized Contrastive View-invariant Learning (FoCoViL), which significantly suppresses the view-specific information on the representation space where the viewpoints are coarsely aligned. By maximizing mutual information with an effective contrastive loss between multi-view sample pairs, FoCoViL associates actions with common view-invariant properties and simultaneously separates the dissimilar ones. We further propose an adaptive focalization method based on pairwise similarity to enhance contrastive learning for a clearer cluster boundary in the learned space. Different from many existing self-supervised representation learning work that rely heavily on supervised classifiers, FoCoViL performs well on both unsupervised and supervised classifiers with superior recognition perfor-mance. Extensive experiments also show that the proposed contrastive-based focalization generates a more discriminative latent representation.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:198 / 209
页数:12
相关论文
共 50 条
  • [41] View-invariant gait recognition based on kinect skeleton feature
    Sun, Jiande
    Wang, Yufei
    Li, Jing
    Wan, Wenbo
    Cheng, De
    Zhang, Huaxiang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (19) : 24909 - 24935
  • [42] Skeleton-based Self-Supervised Feature Extraction for Improved Dynamic Hand Gesture Recognition
    Ikne, Omar
    Allaert, Benjamin
    Wannous, Hazem
    2024 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, FG 2024, 2024,
  • [43] Multi-Granularity Anchor-Contrastive Representation Learning for Semi-Supervised Skeleton-Based Action Recognition
    Shu, Xiangbo
    Xu, Binqian
    Zhang, Liyan
    Tang, Jinhui
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (06) : 7559 - 7576
  • [44] Modulation Recognition of Digital Signals Based on Contrastive Self-Supervised Learning
    Liao, Yanping
    Gao, Yang
    Guo, Qiang
    2024 9TH INTERNATIONAL CONFERENCE ON ELECTRONIC TECHNOLOGY AND INFORMATION SCIENCE, ICETIS 2024, 2024, : 432 - 436
  • [45] View-Invariant Skeleton Action Representation Learning via Motion Retargeting
    Yang, Di
    Wang, Yaohui
    Dantcheva, Antitza
    Garattoni, Lorenzo
    Francesca, Gianpiero
    Bremond, Francois
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (07) : 2351 - 2366
  • [46] Contrastive Self-Supervised Learning for Optical Music Recognition
    Penarrubia, Carlos
    Valero-Mas, Jose J.
    Calvo-Zaragoza, Jorge
    DOCUMENT ANALYSIS SYSTEMS, DAS 2024, 2024, 14994 : 312 - 326
  • [47] Which One Is Better? Self-supervised Temporal Coherence Learning for Skeleton Based Action Recognition
    Wu, Bizhu
    Wu, Mingyan
    Ji, Haoqin
    Shen, Linlin
    2022 IEEE INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB), 2022,
  • [48] Learning Representations by Contrastive Spatio-Temporal Clustering for Skeleton-Based Action Recognition
    Wang, Mingdao
    Li, Xueming
    Chen, Siqi
    Zhang, Xianlin
    Ma, Lei
    Zhang, Yue
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3207 - 3220
  • [49] Reconstruction-driven contrastive learning for unsupervised skeleton-based human action recognition
    Liu, Xing
    Gao, Bo
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [50] EnsCLR: Unsupervised skeleton-based action recognition via ensemble contrastive learning of representation
    Wang, Kun
    Cao, Jiuxin
    Cao, Biwei
    Liu, Bo
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 247