Focalized contrastive view-invariant learning for self-supervised skeleton-based action recognition

被引:13
|
作者
Men, Qianhui [1 ,2 ]
Ho, Edmond S. L. [3 ]
Shum, Hubert P. H. [4 ]
Leung, Howard [1 ]
机构
[1] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[2] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
[3] Univ Glasgow, Sch Comp Sci, Glasgow G12 8RZ, Scotland
[4] Univ Durham, Dept Comp Sci, Durham DH1 3LE, England
关键词
Self -supervised learning; Skeleton -based action recognition; Contrastive learning;
D O I
10.1016/j.neucom.2023.03.070
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning view-invariant representation is a key to improving feature discrimination power for skeleton -based action recognition. Existing approaches cannot effectively remove the impact of viewpoint due to the implicit view-dependent representations. In this work, we propose a self-supervised framework called Focalized Contrastive View-invariant Learning (FoCoViL), which significantly suppresses the view-specific information on the representation space where the viewpoints are coarsely aligned. By maximizing mutual information with an effective contrastive loss between multi-view sample pairs, FoCoViL associates actions with common view-invariant properties and simultaneously separates the dissimilar ones. We further propose an adaptive focalization method based on pairwise similarity to enhance contrastive learning for a clearer cluster boundary in the learned space. Different from many existing self-supervised representation learning work that rely heavily on supervised classifiers, FoCoViL performs well on both unsupervised and supervised classifiers with superior recognition perfor-mance. Extensive experiments also show that the proposed contrastive-based focalization generates a more discriminative latent representation.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:198 / 209
页数:12
相关论文
共 50 条
  • [21] Learning Representations by Contrastive Spatio-Temporal Clustering for Skeleton-Based Action Recognition
    Wang, Mingdao
    Li, Xueming
    Chen, Siqi
    Zhang, Xianlin
    Ma, Lei
    Zhang, Yue
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3207 - 3220
  • [22] EnsCLR: Unsupervised skeleton-based action recognition via ensemble contrastive learning of representation
    Wang, Kun
    Cao, Jiuxin
    Cao, Biwei
    Liu, Bo
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 247
  • [23] SELF-SUPERVISED CONTRASTIVE LEARNING FOR AUDIO-VISUAL ACTION RECOGNITION
    Liu, Yang
    Tan, Ying
    Lan, Haoyuan
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1000 - 1004
  • [24] Localized Linear Temporal Dynamics for Self-Supervised Skeleton Action Recognition
    Wang, Xinghan
    Mu, Yadong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 10189 - 10199
  • [25] Self-supervised pretext task collaborative multi-view contrastive learning for video action recognition
    Bi, Shuai
    Hu, Zhengping
    Zhao, Mengyao
    Zhang, Hehao
    Di, Jirui
    Sun, Zhe
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (07) : 3775 - 3782
  • [26] Self-supervised pretext task collaborative multi-view contrastive learning for video action recognition
    Shuai Bi
    Zhengping Hu
    Mengyao Zhao
    Hehao Zhang
    Jirui Di
    Zhe Sun
    Signal, Image and Video Processing, 2023, 17 : 3775 - 3782
  • [27] CdCLR: Clip- Driven Contrastive Learning for Skeleton-Based Action Recognition
    Gao, Rong
    Liu, Xin
    Yang, Jingyu
    Yue, Huanjing
    2022 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2022,
  • [28] Idempotent Unsupervised Representation Learning for Skeleton-Based Action Recognition
    Lin, Lilang
    Wu, Lehong
    Zhang, Jiahang
    Wang, Jiaying
    COMPUTER VISION - ECCV 2024, PT XXVI, 2025, 15084 : 75 - 92
  • [29] Adaptive multi-level graph convolution with contrastive learning for skeleton-based action recognition
    Geng, Pei
    Li, Haowei
    Wang, Fuyun
    Lyu, Lei
    SIGNAL PROCESSING, 2022, 201
  • [30] Multi-Granularity Anchor-Contrastive Representation Learning for Semi-Supervised Skeleton-Based Action Recognition
    Shu, Xiangbo
    Xu, Binqian
    Zhang, Liyan
    Tang, Jinhui
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (06) : 7559 - 7576