3D Detection of ALMA Sources Through Deep Learning

被引:0
|
作者
Veneri, Michele Delli [1 ,2 ]
Tychoniec, Lukasz [3 ]
Guglielmetti, Fabrizia [3 ]
Villard, Eric [3 ]
Longo, Giuseppe [4 ]
机构
[1] Ist Nazl Fis Nucl, Sect Naples, Via Cintia 1, I-80126 Naples, Italy
[2] Univ Naples Federico II, Dept Elect Engn & Informat Technol, Via Claudio 21, I-80125 Naples, NA, Italy
[3] ESO, Karl Schwarzschild Str 2, D-85748 Garching, Germany
[4] Univ Naples Federico II, Dept Phys Ettore Pancini, Via Cintia 1, I-80126 Naples, Italy
来源
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT I | 2023年 / 1752卷
关键词
Deep learning; Object detection; Radio interferometry; IMAGES;
D O I
10.1007/978-3-031-23618-1_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a Deep Learning pipeline for the detection of astronomical sources within radiointerferometric simulated data cubes. Our pipeline is constituted by two Deep Learning models: a Convolutional Autoencoder for the detection of sources within the spatial domain of the cube, and a RNN for the denoising and detection of emission peaks in the frequency domain. The combination of spatial and frequency information allows for higher completeness and helps to remove false positives. The pipeline has been tested on simulated ALMA observations achieving better performances and faster execution times with respect to traditional methods. The pipeline can detect 92% of sources up to a flux of 1.31 Jy/beam with no false positives thus providing a reliable source detection solution for future astronomical radio surveys.
引用
收藏
页码:269 / 280
页数:12
相关论文
共 50 条
  • [31] Anthropometric Landmark Detection in 3D Head Surfaces Using a Deep Learning Approach
    Torres, Helena R.
    Morais, Pedro
    Fritze, Anne
    Oliveira, Bruno
    Veloso, Fernando
    Ruediger, Mario
    Fonseca, Jaime C.
    Vilaca, Joao L.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (07) : 2643 - 2654
  • [32] 3D detection and tracking of deformable bubbles in swarms with the aid of deep learning models
    Hessenkemper, Hendrik
    Wang, Lantian
    Lucas, Dirk
    Tan, Shiyong
    Ni, Rui
    Ma, Tian
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2024, 179
  • [33] A Survey on Deep Learning Based Segmentation, Detection and Classification for 3D Point Clouds
    Vinodkumar, Prasoon Kumar
    Karabulut, Dogus
    Avots, Egils
    Ozcinar, Cagri
    Anbarjafari, Gholamreza
    ENTROPY, 2023, 25 (04)
  • [34] A Review on Deep Learning Techniques for 3D Sensed Data Classification
    Griffiths, David
    Boehm, Jan
    REMOTE SENSING, 2019, 11 (12)
  • [35] 3D Printer State Monitoring Mobile Application through a Deep Learning Approach
    Sampedro, Gabriel Avelino
    Agron, Dannielle Jaye
    Huyo-a, Shekinah Lor
    Abisado, Mideth
    Kim, Dong-Seong
    Lee, Jae-Min
    2022 IEEE INTERNATIONAL SYMPOSIUM ON ADVANCED CONTROL OF INDUSTRIAL PROCESSES (ADCONIP 2022), 2022, : 283 - 284
  • [36] A Comprehensive Review on 3D Object Detection and 6D Pose Estimation With Deep Learning
    Hoque, Sabera
    Arafat, Md. Yasir
    Xu, Shuxiang
    Maiti, Ananda
    Wei, Yuchen
    IEEE ACCESS, 2021, 9 : 143746 - 143770
  • [37] Convolutional deep learning for 3D object retrieval
    Weizhi Nie
    Qun Cao
    Anan Liu
    Yuting Su
    Multimedia Systems, 2017, 23 : 325 - 332
  • [38] EdgeNet: Deep metric learning for 3D shapes
    Chen, Mingjia
    Zou, Qianfang
    Wang, Changbo
    Liu, Ligang
    COMPUTER AIDED GEOMETRIC DESIGN, 2019, 72 : 19 - 33
  • [39] Deep imitation learning for 3D navigation tasks
    Ahmed Hussein
    Eyad Elyan
    Mohamed Medhat Gaber
    Chrisina Jayne
    Neural Computing and Applications, 2018, 29 : 389 - 404
  • [40] Deep imitation learning for 3D navigation tasks
    Hussein, Ahmed
    Elyan, Eyad
    Gaber, Mohamed Medhat
    Jayne, Chrisina
    NEURAL COMPUTING & APPLICATIONS, 2018, 29 (07) : 389 - 404