PurposeThis paper aims to develop an algorithm to study the impact of dynamic resource disruption on project makespan and provide a suitable resource disruption ratio for various complex industrial and emergency projects.Design/methodology/approachThis paper addresses the RCPSP in dynamic environments, which assumes resources will be disrupted randomly, that is, the information about resource disruption is not known in advance. To this end, a reactive scheduling model is proposed for the case of random dynamic disruptions of resources. To solve the reactive scheduling model, a hybrid genetic algorithm with a variable neighborhood search is proposed.FindingsThe results obtained on the PSLIB instances prove the performance advantage of the algorithm; through sensitivity analysis, it can be obtained, the project makespan increases exponentially as the number of disruptions increase. Furthermore, if more than 50% of the project's resources are randomly disrupted, the project makespan will be significantly impacted.Originality/valueThe paper focuses on the impact of dynamic resource disruptions on project makespan. Few studies have considered stochastic, dynamic resource uncertainty. In addition, this research proposes a reasonable scheduling algorithm for the research problem, and the conclusions drawn from the research provide decision support for project managers.