Recent strategies to develop pH-sensitive injectable hydrogels

被引:21
|
作者
Thambi, Thavasyappan [1 ]
Jung, Jae Min [1 ]
Lee, Doo Sung [1 ]
机构
[1] Sungkyunkwan Univ, Sch Chem Engn, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
RADIOPAQUE EMBOLIC HYDROGELS; POLYPEPTIDE BLOCK-COPOLYMERS; DRUG-DELIVERY; POTENTIAL APPLICATION; RESPONSIVE HYDROGELS; SUSTAINED DELIVERY; DIBLOCK COPOLYMERS; POLYMERS; BIOMATERIALS; STABILITY;
D O I
10.1039/d2bm01519f
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
"Smart" biomaterials that are responsive to pathological abnormalities are an appealing class of therapeutic platforms for the development of personalized medications. The development of such therapeutic platforms requires novel techniques that could precisely deliver therapeutic agents to the diseased tissues, resulting in enhanced therapeutic effects without harming normal tissues. Among various therapeutic platforms, injectable pH-responsive biomaterials are promising biomaterials that respond to the change in environmental pH. Aqueous solutions of injectable pH-responsive biomaterials exhibit a phase transition from sol-to-gel in response to environmental pH changes. The injectable pH-responsive hydrogel depot can provide spatially and temporally controlled release of various bioactive agents including chemotherapeutic drugs, peptides, and proteins. Therapeutic agents are imbibed into hydrogels by simple mixing without the use of toxic solvents and used for long-term storage or in situ injection using a syringe or catheter that could form a stable gel and acts as a controlled release depot in a minimally invasive manner. Tunable physicochemical properties of the hydrogels, such as biodegradability, ability to interact with drugs and mechanical properties, can control the release of the therapeutic agent. This review highlights the advances in the design and development of biodegradable and in situ forming injectable pH-responsive biomaterials that respond to the physiological conditions. Special attention has been paid to the development of amphoteric pH-responsive biomaterials and their utilization in biomedical applications. We also highlight key challenges and future directions of pH-responsive biomaterials in clinical translation.
引用
收藏
页码:1948 / 1961
页数:14
相关论文
共 50 条
  • [21] PH-SENSITIVE HYDROGELS - CHARACTERISTICS AND POTENTIAL IN DRUG DELIVERY
    BRONDSTED, H
    KOPECEK, J
    ACS SYMPOSIUM SERIES, 1992, 480 : 285 - 304
  • [22] Novel pH-sensitive physical hydrogels of carboxymethyl scleroglucan
    Corrente, Federica
    Paolicelli, Patrizia
    Matricardi, Pietro
    Tita, Beatrice
    Vitali, Federica
    Casadei, Maria Antonietta
    JOURNAL OF PHARMACEUTICAL SCIENCES, 2012, 101 (01) : 256 - 267
  • [23] Cellulose fibre-supported pH-sensitive hydrogels
    Karlsson, JO
    Gatenholm, P
    POLYMER, 1999, 40 (02) : 379 - 387
  • [24] pH-Sensitive Janus Hydrogels with Bidirectional Bending Behaviors
    Wang, Zhongrui
    Meng, Yuwen
    Sun, Nan
    Xing, Yongzheng
    Wang, Xu
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2025,
  • [25] SURFACE INSTABILITIES DURING SWELLING OF PH-SENSITIVE HYDROGELS
    DRUMMOND, WR
    KNIGHT, ML
    BRANNON, ML
    PEPPAS, NA
    JOURNAL OF CONTROLLED RELEASE, 1988, 7 (02) : 181 - 183
  • [26] Temperature and pH-sensitive injectable hydrogels based on poly(sulfamethazine carbonate urethane) for sustained delivery of cationic proteins
    Phan, V. H. Giang
    Thambi, Thavasyappan
    Gil, Moon Soo
    Lee, Doo Sung
    POLYMER, 2017, 109 : 38 - 48
  • [27] Recent Progress in pH-Sensitive Gene Carriers
    Shen Yin
    Hu Guixiang
    Zhang Huaxing
    Qi Lili
    Luo Chengcai
    ACTA CHIMICA SINICA, 2013, 71 (03) : 323 - 333
  • [28] Thermo- and pH-sensitive hydrogels functionalized with thiol groups
    Montero-Rama, María Pilar
    Liras, Marta
    García, Olga
    Quijada-Garrido, Isabel
    European Polymer Journal, 2015, 63 : 37 - 44
  • [29] Meshless simulation of equilibrium swelling/deswelling of PH-sensitive hydrogels
    Wang, QX
    Li, H
    Lam, KY
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2006, 44 (02) : 326 - 337
  • [30] pH-sensitive drug delivery carriers of chitosan based hydrogels
    Yin, YJ
    Shao, L
    Guan, YL
    Yao, KD
    23RD INTERNATIONAL SYMPOSIUM ON CONTROLLED RELEASE OF BIOACTIVE MATERIALS, 1996 PROCEEDINGS, 1996, : 771 - 772