External-pressure-electrochemistry coupling in solid-state lithium metal batteries

被引:93
作者
Hu, Xia [1 ,2 ]
Zhang, Zhijia [1 ,3 ]
Zhang, Xiang [1 ]
Wang, Yao [1 ]
Yang, Xu [3 ]
Wang, Xia [4 ]
Fayena-Greenstein, Miryam [5 ,6 ]
Yehezkel, Hadas Alon [5 ,6 ]
Langford, Steven [3 ]
Zhou, Dong [1 ]
Li, Baohua [1 ]
Wang, Guoxiu [3 ]
Aurbach, Doron [5 ,6 ]
机构
[1] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen, Peoples R China
[2] Tsinghua Univ, Sch Mat Sci & Engn, Beijing, Peoples R China
[3] Univ Technol Sydney, Fac Sci, Ctr Clean Energy Technol, Sch Math & Phys Sci, Sydney, NSW, Australia
[4] Max Planck Inst Chem Phys Solids, Topol Catalysis Grp, Dresden, Germany
[5] Bar Ilan Univ, Dept Chem, Ramat Gan, Israel
[6] Bar Ilan Univ, Bar Ilan Inst Nanotechnol & Adv Mat, Ramat Gan, Israel
基金
澳大利亚研究理事会;
关键词
IONIC-CONDUCTIVITY; ELECTROLYTE INTERPHASE; MECHANICAL CONSTRICTION; CATHODE MATERIALS; STACK PRESSURE; LI; PERFORMANCE; TRANSITION; LI7LA3ZR2O12; NANOINDENTATION;
D O I
10.1038/s41578-024-00669-y
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Solid-state lithium metal batteries (SSLBs) using inorganic solid-state electrolytes (SSEs) have attracted extensive scientific and commercial interest owing to their potential to provide higher energy density and safety than conventional Li-ion batteries. These batteries are subject to external pressure during both their manufacturing processes (fabrication pressure) and their operation (stack pressure). This pressure not only affects the intrinsic properties of both the electrolytes (such as ionic conductivity and electrochemical voltage window) and the electrodes (such as ion transport and structural variation) but also determines the cyclability and safety of the whole battery. Hence, understanding the effect of pressure is essential when designing high-performance SSLBs. This Review aims to elucidate the coupling between external pressure and electrochemistry in these batteries. We summarize the effects of external pressure on SSEs and electrodes, and on the interfaces between the components. We analyse the overall electrochemical performance and safety of the batteries under external pressure. Finally, we clarify the dominant challenges in achieving pressure-proof and low-pressure SSLBs, laying out a perspective for future breakthroughs. Solid-state lithium metal batteries have the potential to meet energy density and safety requirements that current commercial Li-ion batteries cannot. Given their solid-state components, these batteries are subject to - and strongly affected by - external pressure during their manufacturing and operation. This Review examines the relationship between external pressure and electrochemical behaviour in these batteries.
引用
收藏
页码:305 / 320
页数:16
相关论文
共 160 条
[41]   Architectural design and fabrication approaches for solid-state batteries [J].
Hao, Fang ;
Han, Fudong ;
Liang, Yanliang ;
Wang, Chunsheng ;
Yao, Yan .
MRS BULLETIN, 2018, 43 (10) :775-781
[42]   The passivity of lithium electrodes in liquid electrolytes for secondary batteries [J].
He, Xin ;
Bresser, Dominic ;
Passerini, Stefano ;
Baakes, Florian ;
Krewer, Ulrike ;
Lopez, Jeffrey ;
Mallia, Christopher Thomas ;
Shao-Horn, Yang ;
Cekic-Laskovic, Isidora ;
Wiemers-Meyer, Simon ;
Soto, Fernando A. ;
Ponce, Victor ;
Seminario, Jorge M. ;
Balbuena, Perla B. ;
Jia, Hao ;
Xu, Wu ;
Xu, Yaobin ;
Wang, Chongmin ;
Horstmann, Birger ;
Amine, Rachid ;
Su, Chi-Cheung ;
Shi, Jiayan ;
Amine, Khalil ;
Winter, Martin ;
Latz, Arnulf ;
Kostecki, Robert .
NATURE REVIEWS MATERIALS, 2021, 6 (11) :1036-1052
[43]   Nanoindentation of high-purity vapor deposited lithium films: A mechanistic rationalization of the transition from diffusion to dislocation-mediated flow [J].
Herbert, Erik G. ;
Hackney, Stephen A. ;
Thole, Violet ;
Dudney, Nancy J. ;
Phani, P. Sudharshan .
JOURNAL OF MATERIALS RESEARCH, 2018, 33 (10) :1361-1368
[44]   Nanoindentation of high-purity vapor deposited lithium films: The elastic modulus [J].
Herbert, Erik G. ;
Hackney, Stephen A. ;
Dudney, Nancy J. ;
Phani, P. Sudharshan .
JOURNAL OF MATERIALS RESEARCH, 2018, 33 (10) :1335-1346
[45]   Structural stability of the Li-ion conductor Li7La3Zr2O12 investigated by high-pressure in-situ X-ray diffraction and Raman spectroscopy [J].
Hirose, Eiichi ;
Niwa, Ken ;
Kataoka, Kunimitsu ;
Akimoto, Junji ;
Hasegawa, Masashi .
MATERIALS RESEARCH BULLETIN, 2018, 107 :361-365
[46]   An in Situ-Formed Mosaic Li7Sn3/LiF Interface Layer for High-Rate and Long-Life Garnet-Based Lithium Metal Batteries [J].
Hu, Bingkun ;
Yu, Wei ;
Xu, Bingqing ;
Zhang, Xue ;
Liu, Ting ;
Shen, Yang ;
Lin, Yuan-Hua ;
Nan, Ce-Wen ;
Li, Liangliang .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (38) :34939-34947
[47]   A Lithium Intrusion-Blocking Interfacial Shield for Wide-Pressure-Range Solid-State Lithium Metal Batteries [J].
Hu, Xia ;
Yu, Jiahao ;
Wang, Yao ;
Guo, Weiqian ;
Zhang, Xiang ;
Armand, Michel ;
Kang, Feiyu ;
Wang, Guoxiu ;
Zhou, Dong ;
Li, Baohua .
ADVANCED MATERIALS, 2024, 36 (07)
[48]   Li-ion battery material under high pressure: amorphization and enhanced conductivity of Li4Ti5O12 [J].
Huang, Yanwei ;
He, Yu ;
Sheng, Howard ;
Lu, Xia ;
Dong, Haini ;
Samanta, Sudeshna ;
Dong, Hongliang ;
Li, Xifeng ;
Kim, Duck Young ;
Mao, Ho-kwang ;
Liu, Yuzi ;
Li, Heping ;
Li, Hong ;
Wang, Lin .
NATIONAL SCIENCE REVIEW, 2019, 6 (02) :239-246
[49]   Morphology and transport properties of the solid electrolyte Li7La3Zr2O12 prepared by the solid-state and citrate-nitrate methods [J].
Il'ina, E. A. ;
Andreev, O. L. ;
Antonov, B. D. ;
Batalov, N. N. .
JOURNAL OF POWER SOURCES, 2012, 201 :169-173
[50]   THE EFFECT OF THE HYDROSTATIC-PRESSURE ON THE IONIC-CONDUCTIVITY IN A PEROVSKITE LANTHANUM LITHIUM TITANATE [J].
INAGUMA, Y ;
YU, JD ;
SHAN, YJ ;
ITOH, M ;
NAKAMURA, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (01) :L8-L11