External-pressure-electrochemistry coupling in solid-state lithium metal batteries

被引:93
作者
Hu, Xia [1 ,2 ]
Zhang, Zhijia [1 ,3 ]
Zhang, Xiang [1 ]
Wang, Yao [1 ]
Yang, Xu [3 ]
Wang, Xia [4 ]
Fayena-Greenstein, Miryam [5 ,6 ]
Yehezkel, Hadas Alon [5 ,6 ]
Langford, Steven [3 ]
Zhou, Dong [1 ]
Li, Baohua [1 ]
Wang, Guoxiu [3 ]
Aurbach, Doron [5 ,6 ]
机构
[1] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen, Peoples R China
[2] Tsinghua Univ, Sch Mat Sci & Engn, Beijing, Peoples R China
[3] Univ Technol Sydney, Fac Sci, Ctr Clean Energy Technol, Sch Math & Phys Sci, Sydney, NSW, Australia
[4] Max Planck Inst Chem Phys Solids, Topol Catalysis Grp, Dresden, Germany
[5] Bar Ilan Univ, Dept Chem, Ramat Gan, Israel
[6] Bar Ilan Univ, Bar Ilan Inst Nanotechnol & Adv Mat, Ramat Gan, Israel
基金
澳大利亚研究理事会;
关键词
IONIC-CONDUCTIVITY; ELECTROLYTE INTERPHASE; MECHANICAL CONSTRICTION; CATHODE MATERIALS; STACK PRESSURE; LI; PERFORMANCE; TRANSITION; LI7LA3ZR2O12; NANOINDENTATION;
D O I
10.1038/s41578-024-00669-y
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Solid-state lithium metal batteries (SSLBs) using inorganic solid-state electrolytes (SSEs) have attracted extensive scientific and commercial interest owing to their potential to provide higher energy density and safety than conventional Li-ion batteries. These batteries are subject to external pressure during both their manufacturing processes (fabrication pressure) and their operation (stack pressure). This pressure not only affects the intrinsic properties of both the electrolytes (such as ionic conductivity and electrochemical voltage window) and the electrodes (such as ion transport and structural variation) but also determines the cyclability and safety of the whole battery. Hence, understanding the effect of pressure is essential when designing high-performance SSLBs. This Review aims to elucidate the coupling between external pressure and electrochemistry in these batteries. We summarize the effects of external pressure on SSEs and electrodes, and on the interfaces between the components. We analyse the overall electrochemical performance and safety of the batteries under external pressure. Finally, we clarify the dominant challenges in achieving pressure-proof and low-pressure SSLBs, laying out a perspective for future breakthroughs. Solid-state lithium metal batteries have the potential to meet energy density and safety requirements that current commercial Li-ion batteries cannot. Given their solid-state components, these batteries are subject to - and strongly affected by - external pressure during their manufacturing and operation. This Review examines the relationship between external pressure and electrochemical behaviour in these batteries.
引用
收藏
页码:305 / 320
页数:16
相关论文
共 160 条
[1]   Partial cation disorder in Li2MnO3 obtained by high-pressure synthesis [J].
Abulikemu, Aierxiding ;
Gao, Shenghan ;
Matsunaga, Toshiyuki ;
Takatsu, Hiroshi ;
Tassel, Cedric ;
Kageyama, Hiroshi ;
Saito, Takashi ;
Watanabe, Toshiki ;
Uchiyama, Tomoki ;
Yamamoto, Kentaro ;
Uchimoto, Yoshiharu ;
Takami, Tsuyoshi .
APPLIED PHYSICS LETTERS, 2022, 120 (18)
[2]   Boosting Solid-State Diffusivity and Conductivity in Lithium Superionic Argyrodites by Halide Substitution [J].
Adeli, Parvin ;
Bazak, J. David ;
Park, Kern Ho ;
Kochetkov, Ivan ;
Huq, Ashfia ;
Goward, Gillian R. ;
Nazar, Linda F. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (26) :8681-8686
[3]   Stability of Electrodeposition at Solid-Solid Interfaces and Implications for Metal Anodes [J].
Ahmad, Zeeshan ;
Viswanathan, Venkatasubramanian .
PHYSICAL REVIEW LETTERS, 2017, 119 (05)
[4]   High pressure polymorphs of LiCoPO4 and LiCoAsO4 [J].
Amador, U. ;
Gallardo-Amores, J. M. ;
Heymann, G. ;
Huppertz, H. ;
Moran, E. ;
Arroyo y de Dompablo, M. E. .
SOLID STATE SCIENCES, 2009, 11 (02) :343-348
[5]   Polymorphs of Li3PO4 and Li2MSiO4 (M = Mn, Co) The role of pressure [J].
Arroyo y de Dompablo, M. E. ;
Amador, U. ;
Gallardo-Amores, J. M. ;
Moran, E. ;
Ehrenberg, H. ;
Dupont, L. ;
Dominko, R. .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :638-642
[6]   Accelerating Battery Characterization Using Neutron and Synchrotron Techniques: Toward a Multi-Modal and Multi-Scale Standardized Experimental Workflow [J].
Atkins, Duncan ;
Capria, Ennio ;
Edstrom, Kristina ;
Famprikis, Theodosios ;
Grimaud, Alexis ;
Jacquet, Quentin ;
Johnson, Mark ;
Matic, Aleksandar ;
Norby, Poul ;
Reichert, Harald ;
Rueff, Jean-Pascal ;
Villevieille, Claire ;
Wagemaker, Marnix ;
Lyonnard, Sandrine .
ADVANCED ENERGY MATERIALS, 2022, 12 (17)
[7]   Understanding the Role of Lithium Iodide in Lithium-Oxygen Batteries [J].
Bi, Xuanxuan ;
Li, Jiantao ;
Dahbi, Mouad ;
Alami, Jones ;
Amine, Khalil ;
Lu, Jun .
ADVANCED MATERIALS, 2022, 34 (01)
[8]   Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors "Li7La3Zr2O12" and Li7-xLa3Zr2-xTaxO12 with garnet-type structure [J].
Buschmann, Henrik ;
Berendts, Stefan ;
Mogwitz, Boris ;
Janek, Juergen .
JOURNAL OF POWER SOURCES, 2012, 206 :236-244
[9]   Excellent Li/Garnet Interface Wettability Achieved by Porous Hard Carbon Layer for Solid State Li Metal Battery [J].
Chen, Linhui ;
Zhang, Jian ;
Tong, Rong-Ao ;
Zhang, Jingxi ;
Wang, Hailong ;
Shao, Gang ;
Wang, Chang-An .
SMALL, 2022, 18 (08)
[10]   Improved stability against moisture and lithium metal by doping F into Li3InCl6 [J].
Chen, Xin ;
Jia, Zhiqing ;
Lv, Hanmei ;
Wang, Chenggong ;
Zhao, Ning ;
Guo, Xiangxin .
JOURNAL OF POWER SOURCES, 2022, 545