Synthesis of Prussian Blue nanoparticles in water/alcohol mixtures

被引:6
作者
Khramtsov, Pavel [1 ,2 ]
Kropaneva, Maria [1 ,2 ]
Kiselkov, Dmitriy [3 ,4 ]
Minin, Artem [5 ,6 ]
Chekanova, Larisa [3 ]
Rayev, Mikhail [1 ,2 ]
机构
[1] RAS, Inst Ecol & Genet Microorganisms, Ural Branch, Perm 614081, Russia
[2] Perm State Univ, Biol Fac, Perm 614068, Russia
[3] RAS, Urals Branch, Inst Tech Chem, Perm 614068, Russia
[4] Perm Natl Res Polytech Univ, Perm 614990, Russia
[5] RAS, MN Mikheev Inst Met Phys, Urals Branch, Ekaterinburg 620108, Russia
[6] Ural Fed Univ, Ekaterinburg 620002, Russia
基金
俄罗斯科学基金会;
关键词
Coordination polymer; Polyol synthesis; Co-precipitation; Nanozymes; CHARGE-TRANSFER; CRYSTALLIZATION; PEROXIDASE; VISCOSITY; NANOZYME; GROWTH;
D O I
10.1016/j.colsurfa.2024.133446
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Prussian Blue, a blue coordination polymer has a very promising future in the realm of biomedicine. Its nanoparticles, known as catalytic labels or nanozymes. They exhibit remarkable peroxidase-like properties and serve as effective antioxidants. Demand for synthesizing Prussian Blue nanoparticles with customizable sizes is on the rise. This article unveil a novel approach to synthesizing Prussian Blue nanoparticles. A synthesis of Prussian Blue nanoparticles by reducing an equimolar mixture of FeCl3 and K3[Fe(CN)6] with hydrogen peroxide in different water-alcohol mixtures is demonstrated for the first time. Alcohols with a lower dielectric constant (propanol -1, isopropyl alcohol, and tert-butanol) contribute to an increase in nanoparticle size, particularly at mole fractions of 0.02-0.05 and beyond. Conversely, alcohols with a higher dielectric constant (ethanol, methanol, ethylene glycol, and propylene glycol, excluding glycerol) demonstrate the ability to decrease nanoparticle size at mole fractions of 0.2-0.26 and higher. A scalable and reproducible method for preparing 30-40 nm Prussian Blue nanoparticles using 79.2% ethylene glycol as a solvent is presented. The proposed mechanism behind the effect of ethylene glycol involves the limitation of both growth and secondary aggregation of Prussian Blue nanoparticles. These synthesized nanoparticles prove their efficiency as catalytic labels in a model vertical flow immunoassay designed to detect antibodies against SARS-CoV-2.
引用
收藏
页数:13
相关论文
共 53 条
[1]  
Bisswanger H., 2014, Perspectives in Science, V1, P41, DOI DOI 10.1016/J.PISC.2014.02.005
[2]   Nanozyme-catalysed CRISPR assay for preamplification-free detection of non-coding RNAs [J].
Broto, Marta ;
Kaminski, Michael M. ;
Adrianus, Christopher ;
Kim, Nayoung ;
Greensmith, Robert ;
Dissanayake-Perera, Schan ;
Schubert, Alexander J. ;
Tan, Xiao ;
Kim, Hyemin ;
Dighe, Anand S. ;
Collins, James J. ;
Stevens, Molly M. .
NATURE NANOTECHNOLOGY, 2022, 17 (10) :1120-+
[3]   Nanoparticles of Prussian blue analogs and related coordination polymers: From information storage to biomedical applications [J].
Catala, Laure ;
Mallah, Talal .
COORDINATION CHEMISTRY REVIEWS, 2017, 346 :32-61
[4]   Tailoring noble metal nanoparticle designs to enable sensitive lateral flow immunoassay [J].
Chen, Xirui ;
Ding, Lu ;
Huang, Xiaolin ;
Xiong, Yonghua .
THERANOSTICS, 2022, 12 (02) :574-602
[5]   Recent advances in colorimetric sensors based on nanozymes with peroxidase-like activity [J].
Chi, Zhongmei ;
Wang, Qiong ;
Gu, Jiali .
ANALYST, 2023, 148 (03) :487-506
[6]   A universal measure of chaotropicity and kosmotropicity [J].
Cray, Jonathan A. ;
Russell, John T. ;
Timson, David J. ;
Singhal, Rekha S. ;
Hallsworth, John E. .
ENVIRONMENTAL MICROBIOLOGY, 2013, 15 (01) :287-296
[7]   Polyol synthesis of nanoparticles: status and options regarding metals, oxides, chalcogenides, and non-metal elements [J].
Dong, H. ;
Chen, Y. -C. ;
Feldmann, C. .
GREEN CHEMISTRY, 2015, 17 (08) :4107-4132
[8]   Prussian Blue Nanoparticles Having Various Sizes and Crystallinities for Multienzyme Catalysis and Magnetic Resonance Imaging [J].
Feng, Kaizheng ;
Zhang, Jing ;
Dong, Haijiao ;
Li, Zhuoxuan ;
Gu, Ning ;
Ma, Ming ;
Zhang, Yu .
ACS APPLIED NANO MATERIALS, 2021, 4 (05) :5176-5186
[9]   The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions [J].
Fievet, F. ;
Ammar-Merah, S. ;
Brayner, R. ;
Chau, F. ;
Giraud, M. ;
Mammeri, F. ;
Peron, J. ;
Piquemal, J. -Y. ;
Sicard, L. ;
Viau, G. .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (14) :5187-5233
[10]   Synthesis, characterization and immobilization of Prussian blue nanoparticles.: A potential tool for biosensing devices [J].
Fiorito, PA ;
Gonçales, VR ;
Ponzio, EA ;
de Torresi, SIC .
CHEMICAL COMMUNICATIONS, 2005, (03) :366-368