THE ALLOW SEQUENCE OF DISTINCT EIGENVALUES FOR A SIGN PATTERN

被引:0
作者
Breen, Jane [1 ]
Brouwer, Carraugh C. [2 ]
Catral, Minerva [3 ]
Cavers, Michael [4 ]
van den Driessche, Pauline [5 ]
vander Meulen, Kevin N. [6 ]
机构
[1] Ontario Tech Univ, Fac Sci, Oshawa, ON L1G 0CS, Canada
[2] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z3, Canada
[3] Xavier Univ, Dept Math, Cincinnati, OH 45207 USA
[4] Univ Toronto Scarborough, Dept Comp & Math Sci, Scarborough, ON M1C 1A4, Canada
[5] Univ Victoria, Dept Mathemat, Victoria, BC V8W 3P5, Canada
[6] Redeemer Univ, Dept Math, Ancaster, ON L9K 1J4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Sign pattern; Eigenvalue; Digraph; Inverse eigenvalue problem; Distinct eigenvalues; MINIMUM NUMBER; MATRIX;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A sign pattern A is a matrix with entries in {+, -, 0}. This article introduces the allow sequence of distinct eigenvalues for an n x n sign pattern A, defined as qseq(A) = (q1, . . . , qn), with qk = 1 if there exists a real matrix with exactly k distinct eigenvalues having pattern A, and qk = 0 otherwise. For example, qseq(A) = (0, . . . , 0, 1) is equivalent to A requiring all distinct eigenvalues, while qseq(A) = (1, 0, . . . , 0) is equivalent to the digraph of A being acyclic. Relationships between the allow sequence for A and composite cycles of the digraph of A are explored to identify zeros in the sequence, while methods based on Jacobian matrices are developed to identify ones in the sequence. When A is an n x n irreducible sign pattern, the possible sequences for qseq(A) are completely determined when n <= 4 and when the sequence has at least n - 4 trailing zeros for n >= 5.
引用
收藏
页码:48 / 80
页数:33
相关论文
共 18 条
  • [1] Ahmadi B, 2013, ELECTRON J LINEAR AL, V26, P673
  • [2] Barrett W, 2017, ELECTRON J COMB, V24
  • [3] Minimum number of distinct eigenvalues allowed by a sign pattern
    Breen, J.
    Brouwer, C.
    Catral, M.
    Cavers, M.
    van den Driessche, P.
    Vander Meulen, K. N.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 654 : 311 - 338
  • [4] Allow problems concerning spectral properties of sign pattern matrices: A survey
    Catral, M.
    Olesky, D. D.
    van den Driessche, P.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (11-12) : 3080 - 3094
  • [5] TECHNIQUES FOR IDENTIFYING INERTIALLY ARBITRARY PATTERNS
    Cavers, M. S.
    Garnett, C.
    Kim, I. -J
    Olesky, D. D.
    Van den Driessche, P.
    Vander Meulen, K. N.
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 71 - 89
  • [6] ALLOW PROBLEMS CONCERNING SPECTRAL PROPERTIES OF PATTERNS
    Cavers, Michael S.
    Fallat, Shaun M.
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 : 731 - 754
  • [7] Spectrally arbitrary patterns
    Drew, JH
    Johnson, CR
    Olesky, DD
    van den Driessche, P
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 308 (1-3) : 121 - 137
  • [8] Potentially nilpotent sign pattern matrices
    Eschenbach, CA
    Li, ZS
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 299 (1-3) : 81 - 99
  • [9] SIGN PATTERNS THAT REQUIRE REPEATED EIGENVALUES
    ESCHENBACH, CA
    JOHNSON, CR
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 190 : 169 - 179
  • [10] The bifurcation lemma for strong properties in the inverse eigenvalue problem of a graph
    Fallat, Shaun M.
    Hall, H. Tracy
    Lin, Jephian C. -H.
    Shader, Bryan L.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 648 : 70 - 87