Current and future perspectives of single-cell multi-omics technologies in cardiovascular research

被引:3
作者
Tan, Wilson Lek Wen [1 ]
Seow, Wei Qiang [1 ]
Zhang, Angela [1 ,2 ]
Rhee, Siyeon [1 ,2 ]
Wong, Wing H. [3 ,4 ]
Greenleaf, William J. [5 ]
Wu, Joseph C. [1 ,2 ,6 ]
机构
[1] Stanford Cardiovasc Inst, Stanford, CA 94305 USA
[2] Greenstone Biosci, Palo Alto, CA 94304 USA
[3] Stanford Univ, Sch Med, Dept Stat, Stanford, CA USA
[4] Stanford Univ, Sch Med, Dept Biomed Data Sci, Stanford, CA USA
[5] Stanford Univ, Sch Med, Dept Genet, Stanford, CA USA
[6] Stanford Univ, Sch Med, Dept Med, Div Cardiovasc Med, Stanford, CA 94305 USA
来源
NATURE CARDIOVASCULAR RESEARCH | 2023年 / 2卷 / 01期
基金
美国国家卫生研究院;
关键词
TRANSCRIPTOME ANALYSIS; GENE-EXPRESSION; RNA-SEQ; CHROMATIN ACCESSIBILITY; HUMAN HEART; REVEALS; PROTEINS; HETEROGENEITY; THOUSANDS; PLATFORM;
D O I
10.1038/s44161-022-00205-7
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Single-cell technology has become an indispensable tool in cardiovascular research since its first introduction in 2009. Here, we highlight the recent remarkable progress in using single-cell technology to study transcriptomic and epigenetic heterogeneity in cardiac disease and development. We then introduce the key concepts in single-cell multi-omics modalities that apply to cardiovascular research. Lastly, we discuss some of the trending concepts in single-cell technology that are expected to propel cardiovascular research to the next phase of single-cell research. Wen Tan et al. review the current technologies available for single-cell transcriptomics, epigenomics and multi-omics analyses, their impact on the cardiovascular research and possible future applications.
引用
收藏
页码:20 / 34
页数:15
相关论文
共 118 条
  • [1] A transcriptional switch governs fibroblast activation in heart disease
    Alexanian, Michael
    Przytycki, Pawel F.
    Micheletti, Rudi
    Padmanabhan, Arun
    Ye, Lin
    Travers, Joshua G.
    Gonzalez-Teran, Barbara
    Silva, Ana Catarina
    Duan, Qiming
    Ranade, Sanjeev S.
    Felix, Franco
    Linares-Saldana, Ricardo
    Li, Li
    Lee, Clara Youngna
    Sadagopan, Nandhini
    Pelonero, Angelo
    Huang, Yu
    Andreoletti, Gaia
    Jain, Rajan
    McKinsey, Timothy A.
    Rosenfeld, Michael G.
    Gifford, Casey A.
    Pollard, Katherine S.
    Haldar, Saptarsi M.
    Srivastava, Deepak
    [J]. NATURE, 2021, 595 (7867) : 438 - +
  • [2] Exploring single-cell data with deep multitasking neural networks
    Amodio, Matthew
    van Dijk, David
    Srinivasan, Krishnan
    Chen, William S.
    Mohsen, Hussein
    Moon, Kevin R.
    Campbell, Allison
    Zhao, Yujiao
    Wang, Xiaomei
    Venkataswamy, Manjunatha
    Desai, Anita
    Ravi, V.
    Kumar, Priti
    Montgomery, Ruth
    Wolf, Guy
    Krishnaswamy, Smita
    [J]. NATURE METHODS, 2019, 16 (11) : 1139 - +
  • [3] A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart
    Asp, Michaela
    Giacomello, Stefania
    Larsson, Ludvig
    Wu, Chenglin
    Furth, Daniel
    Qian, Xiaoyan
    Wardell, Eva
    Custodio, Joaquin
    Reimegard, Johan
    Salmen, Fredrik
    Osterholm, Cecilia
    Stahl, Patrik L.
    Sundstrom, Erik
    Akesson, Elisabet
    Bergmann, Olaf
    Bienko, Magda
    Mansson-Broberg, Agneta
    Nilsson, Mats
    Sylven, Christer
    Lundeberg, Joakim
    [J]. CELL, 2019, 179 (07) : 1647 - +
  • [4] Homogenous 96-Plex PEA Immunoassay Exhibiting High Sensitivity, Specificity, and Excellent Scalability
    Assarsson, Erika
    Lundberg, Martin
    Holmquist, Goeran
    Bjoerkesten, Johan
    Thorsen, Stine Bucht
    Ekman, Daniel
    Eriksson, Anna
    Dickens, Emma Rennel
    Ohlsson, Sandra
    Edfeldt, Gabriella
    Andersson, Ann-Catrin
    Lindstedt, Patrik
    Stenvang, Jan
    Gullberg, Mats
    Fredriksson, Simon
    [J]. PLOS ONE, 2014, 9 (04):
  • [5] scds: computational annotation of doublets in single-cell RNA sequencing data
    Bais, Abha S.
    Kostka, Dennis
    [J]. BIOINFORMATICS, 2020, 36 (04) : 1150 - 1158
  • [6] Single-nucleus and single-cell transcriptomes compared in matched cortical cell types
    Bakken, Trygve E.
    Hodge, Rebecca D.
    Miller, Jeremy A.
    Yao, Zizhen
    Thuc Nghi Nguyen
    Aevermann, Brian
    Barkan, Eliza
    Bertagnolli, Darren
    Casper, Tamara
    Dee, Nick
    Garren, Emma
    Goldy, Jeff
    Graybuck, Lucas T.
    Kroll, Matthew
    Lasken, Roger S.
    Lathia, Kanan
    Parry, Sheana
    Rimorin, Christine
    Scheuermann, Richard H.
    Schork, Nicholas J.
    Shehata, Soraya I.
    Tieu, Michael
    Phillips, John W.
    Bernard, Amy
    Smith, Kimberly A.
    Zeng, Hongkui
    Lein, Ed S.
    Tasic, Bosiljka
    [J]. PLOS ONE, 2018, 13 (12):
  • [7] Functionally heterogeneous human satellite cells identified by single cell RNA sequencing
    Barruet, Emilie
    Garcia, Steven M.
    Striedinger, Katharine
    Wu, Jake
    Lee, Solomon
    Byrnes, Lauren
    Wong, Alvin
    Sun Xuefeng
    Tamaki, Stanley
    Brack, Andrew S.
    Pomerantz, Jason H.
    [J]. ELIFE, 2020, 9
  • [8] Dimensionality reduction for visualizing single-cell data using UMAP
    Becht, Etienne
    McInnes, Leland
    Healy, John
    Dutertre, Charles-Antoine
    Kwok, Immanuel W. H.
    Ng, Lai Guan
    Ginhoux, Florent
    Newell, Evan W.
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (01) : 38 - +
  • [9] High-content CRISPR screening
    Bock, Christoph
    Datlinger, Paul
    Chardon, Florence
    Coelho, Matthew A.
    Dong, Matthew B.
    Lawson, Keith A.
    Lu, Tian
    Maroc, Laetitia
    Norman, Thomas M.
    Song, Bicna
    Stanley, Geoff
    Chen, Sidi
    Garnett, Mathew
    Li, Wei
    Moffat, Jason
    Qi, Lei S.
    Shapiro, Rebecca S.
    Shendure, Jay
    Weissman, Jonathan S.
    Zhuang, Xiaowei
    [J]. NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [10] Single-cell chromatin accessibility reveals principles of regulatory variation
    Buenostro, Jason D.
    Wu, Beijing
    Litzenburger, Ulrike M.
    Ruff, Dave
    Gonzales, Michael L.
    Snyder, Michael P.
    Chang, Howard Y.
    Greenleaf, William J.
    [J]. NATURE, 2015, 523 (7561) : 486 - U264