On the Computational Complexity of Compressed Power Series

被引:0
作者
Karatsuba, E. A. [1 ]
机构
[1] Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Moscow 119333, Russia
基金
俄罗斯科学基金会;
关键词
algorithm; power series; computational complexity; fast algorithm; FEE method; Faulhaber's formula; Bernoulli numbers; MULTIPLICATION;
D O I
10.1134/S000143462307009X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present computational algorithms and complexity estimates for power series in which all exponents are positive integers raised to one and the same integer power >= 2.
引用
收藏
页码:92 / 98
页数:7
相关论文
共 22 条
[1]  
Bernoulli J., 1713, Ars conjectandi, opus posthumum. Accedit Tractatus de seriebus infinitis, et epistola gallice scripta de ludo pilae reticularis
[2]   'Nonclassical' states in quantum optics: a 'squeezed' review of the first 75 years [J].
Dodonov, VV .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2002, 4 (01) :R1-R33
[3]  
Dynkin E. B., 1962, 6 LECT INT C MATH ST
[4]  
Faulhaber J., 1631, Academia Algebrae: darinnen dir miraculosische Guvontiones zu den hochsten Costen weiters continuirt u. profitiert werden
[5]   FASTER INTEGER MULTIPLICATION [J].
Fuerer, Martin .
SIAM JOURNAL ON COMPUTING, 2009, 39 (03) :979-1005
[6]  
KARABUTSA A, 1962, DOKL AKAD NAUK SSSR+, V145, P293
[7]   Comments to my works, written by myself [J].
Karatsuba, A. A. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2013, 282 :S1-S23
[8]  
Karatsuba A. A., 1995, Proceedings of the Steklov Institute of Mathematics-Interperiodica Translation, V211, P169
[9]  
Karatsuba E. A., 1998, Problems of Information Transmission, V34, P342
[10]  
Karatsuba E. A., 1991, Problems of Information Transmission, V27, P339