Temperature-dependent mechanical behavior of aluminum AM structures generated via multi-layer friction surfacing

被引:17
作者
Kallien, Zina [1 ]
Roos, Arne [1 ]
Knothe-Horstmann, Christian [1 ]
Klusemann, Benjamin [1 ,2 ]
机构
[1] Helmholtz Zentrum Hereon, Inst Mat Mech, Max Planck Str 1, D-21502 Geesthacht, Germany
[2] Leuphana Univ Luneburg, Inst Prod Technol & Syst, Univ Allee 1, D-21335 Luneburg, Germany
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2023年 / 871卷
基金
欧洲研究理事会;
关键词
Friction surfacing; Additive manufacturing; Tensile strength; Temperature; Aluminum alloys; Solid state layer deposition;
D O I
10.1016/j.msea.2023.144872
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Multi-layer friction surfacing (MLFS) is a solid state layer deposition technology for metals. In order to make use of the potential of MLFS as technology for additive manufacturing, the material properties of MLFS built structures have to be investigated and understood in detail. This study presents a comprehensive analysis of the mechanical properties of MLFS deposited material from micro-flat tensile testing (MFTT) at elevated temperatures. The specimens obtained from the fine-grained MLFS structures show a slightly higher tensile strength at room temperature but lower tensile strength at testing temperatures of 300 degrees C and above compared to the stud base material. No significant gradient along the MLFS structure could be observed in terms of mechanical properties. The analyses of fracture surfaces and microstructure of tested MFTT specimens provide insights to deformation mechanism of MLFS deposited and consumable stud material. Especially at high testing temperatures of 500 degrees C, MLFS deposited structure shows abnormal grain growth which results in the observed tensile behavior.
引用
收藏
页数:11
相关论文
共 29 条
[1]   Printing functional metallic 3D parts using a hybrid friction-surfacing additive manufacturing process [J].
Abdelall, Esraa S. ;
Al-Dwairi, Abdullah F. ;
Al-Raba'a, Shatha Mahmoud ;
Eldakroury, Mohamed .
PROGRESS IN ADDITIVE MANUFACTURING, 2021, 6 (04) :731-741
[2]   Additive manufacturing: Challenges, trends, and applications [J].
Abdulhameed, Osama ;
Al-Ahmari, Abdulrahman ;
Ameen, Wadea ;
Mian, Syed Hammad .
ADVANCES IN MECHANICAL ENGINEERING, 2019, 11 (02)
[3]   60 Years of Hall-Petch: Past to Present Nano-Scale Connections [J].
Armstrong, Ronald W. .
MATERIALS TRANSACTIONS, 2014, 55 (01) :2-12
[4]   Experimental investigation on the effect of process environment on the mechanical properties of AA5083/Al2O3 nanocomposite fabricated via friction stir processing [J].
Ashjari, M. ;
Asl, A. Mostafapour ;
Rouhi, S. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 645 :40-46
[5]   Use of Friction Surfacing for Additive Manufacturing [J].
Dilip, J. J. S. ;
Babu, S. ;
Rajan, S. Varadha ;
Rafi, K. H. ;
Ram, G. D. Janaki ;
Stucker, B. E. .
MATERIALS AND MANUFACTURING PROCESSES, 2013, 28 (02) :189-194
[6]   Microstructure by design: An approach of grain refinement and isotropy improvement in multi-layer wire-based laser metal deposition [J].
Froend, M. ;
Ventzke, V. ;
Dorn, F. ;
Kashaev, N. ;
Klusemann, B. ;
Enz, J. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 772
[7]  
Galvis J.C., 2018, MAT RES, V21, P321
[8]   Friction surfacing-A review [J].
Gandra, J. ;
Krohn, H. ;
Miranda, R. M. ;
Vilaca, P. ;
Quintino, L. ;
dos Santos, J. F. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2014, 214 (05) :1062-1093
[9]   Performance analysis of friction surfacing [J].
Gandra, J. ;
Miranda, R. M. ;
Vilaca, P. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2012, 212 (08) :1676-1686
[10]   Additive manufacturing of metals [J].
Herzog, Dirk ;
Seyda, Vanessa ;
Wycisk, Eric ;
Emmelmann, Claus .
ACTA MATERIALIA, 2016, 117 :371-392