GRADIENT FLOWS FOR COUPLING ORDER PARAMETERS AND MECHANICS

被引:3
作者
Schmeller, Leonie [1 ]
Peschka, Dirk [1 ]
机构
[1] Weierstrass Inst, D-10117 Berlin, Germany
关键词
Key words; gradient flows; incremental minimization; phase fields; finite strain; gels; PHASE-FIELD MODEL; DIFFUSE-INTERFACE METHODS; LARGE DEFORMATIONS; NUMERICAL-SIMULATION; EQUATIONS; EVOLUTION; ENERGY; FLUIDS; DAMAGE; CAHN;
D O I
10.1137/22M148478X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a formal gradient flow structure for phase-field evolution coupled to mechanics in Lagrangian coordinates, present common ways to couple the evolution, and provide an incremental minimization strategy. While the usual presentation of continuum mechanics is intentionally brief, we construct an extensible functional analytical framework and a discretization approach that preserves the underlying variational structure. We consider phase separation and swelling of gels and then study stationary states of multiphase systems with surface tension and contact lines and show the robustness of the general approach for large deformations. We highlight differences between compressible and incompressible models and discuss issues of the sharp-interface limit for different magnitudes of the Cahn-Hilliard mobility.
引用
收藏
页码:225 / 253
页数:29
相关论文
共 50 条
  • [41] Gradient flows and double bracket equations
    Tam, TY
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2004, 20 (02) : 209 - 224
  • [42] Symmetric Toda, gradient flows, and tridiagonalization
    Bloch, Anthony M.
    Karp, Steven N.
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 450
  • [43] Approximate Inference with Wasserstein Gradient Flows
    Frogner, Charlie
    Poggio, Tomaso
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 2581 - 2589
  • [44] Efficient modified techniques of invariant energy quadratization approach for gradient flows
    Liu, Zhengguang
    Li, Xiaoli
    APPLIED MATHEMATICS LETTERS, 2019, 98 : 206 - 214
  • [45] A JKO SPLITTING SCHEME FOR KANTOROVICH-FISHER-RAO GRADIENT FLOWS
    Gallouet, Thomas O.
    Monsaingeon, Leonard
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (02) : 1100 - 1130
  • [46] An identification method to calibrate higher-order parameters in local second-gradient models
    Raude, Simon
    Giot, Richard
    Foucault, Alexandre
    Fernandes, Romeo
    COMPTES RENDUS MECANIQUE, 2015, 343 (7-8): : 443 - 456
  • [47] Statistical mechanics of Fofonoff flows in an oceanic basin
    Naso, A.
    Chavanis, P. H.
    Dubrulle, B.
    EUROPEAN PHYSICAL JOURNAL B, 2011, 80 (04) : 493 - 517
  • [48] ARBITRARILY HIGH-ORDER UNCONDITIONALLY ENERGY STABLE SCHEMES FOR THERMODYNAMICALLY CONSISTENT GRADIENT FLOW MODELS
    Gong, Yuezheng
    Zhao, Jia
    Wang, Qi
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (01) : B135 - B156
  • [49] A general class of linear unconditionally energy stable schemes for the gradient flows, II
    Tan, Zengqiang
    Tang, Huazhong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 495
  • [50] CONVERGENCE AND ERROR ANALYSIS FOR THE SCALAR AUXILIARY VARIABLE (SAV) SCHEMES TO GRADIENT FLOWS
    Shen, Jie
    Xu, Jie
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (05) : 2895 - 2912