GRADIENT FLOWS FOR COUPLING ORDER PARAMETERS AND MECHANICS

被引:3
作者
Schmeller, Leonie [1 ]
Peschka, Dirk [1 ]
机构
[1] Weierstrass Inst, D-10117 Berlin, Germany
关键词
Key words; gradient flows; incremental minimization; phase fields; finite strain; gels; PHASE-FIELD MODEL; DIFFUSE-INTERFACE METHODS; LARGE DEFORMATIONS; NUMERICAL-SIMULATION; EQUATIONS; EVOLUTION; ENERGY; FLUIDS; DAMAGE; CAHN;
D O I
10.1137/22M148478X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a formal gradient flow structure for phase-field evolution coupled to mechanics in Lagrangian coordinates, present common ways to couple the evolution, and provide an incremental minimization strategy. While the usual presentation of continuum mechanics is intentionally brief, we construct an extensible functional analytical framework and a discretization approach that preserves the underlying variational structure. We consider phase separation and swelling of gels and then study stationary states of multiphase systems with surface tension and contact lines and show the robustness of the general approach for large deformations. We highlight differences between compressible and incompressible models and discuss issues of the sharp-interface limit for different magnitudes of the Cahn-Hilliard mobility.
引用
收藏
页码:225 / 253
页数:29
相关论文
共 50 条
  • [31] Deterministic flows of order-parameters in stochastic processes of quantum Monte Carlo method
    Inoue, Jun-ichi
    INTERNATIONAL WORKSHOP ON STATISTICAL-MECHANICAL INFORMATICS 2010 (IW-SMI 2010), 2010, 233
  • [32] Two Structure-Preserving Time Discretizations for Gradient Flows
    Juengel, Ansgar
    Stefanelli, Ulisse
    Trussardi, Lara
    APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 80 (03) : 733 - 764
  • [33] Gradient flow perspective on thin-film bilayer flows
    Huth, R.
    Jachalski, S.
    Kitavtsev, G.
    Peschka, D.
    JOURNAL OF ENGINEERING MATHEMATICS, 2015, 94 (01) : 43 - 61
  • [34] A Compact Coupling Interface Method with Second-Order Gradient Approximation for Elliptic Interface Problems
    Zhang, Ray Zirui
    Cheng, Li-Tien
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 100 (02)
  • [35] Quasistatic Nonlinear Viscoelasticity and Gradient Flows
    J. M. Ball
    Y. Şengül
    Journal of Dynamics and Differential Equations, 2015, 27 : 405 - 442
  • [36] Gradient flows within plane fields
    Etnyre, J
    Ghrist, R
    COMMENTARII MATHEMATICI HELVETICI, 1999, 74 (04) : 507 - 529
  • [37] DATA-DRIVEN GRADIENT FLOWS
    Pietschmann, Jan-Frederik
    Schlottbom, Matthias
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2022, 57 : 193 - 215
  • [38] Large-ScaleWasserstein Gradient Flows
    Mokrov, Petr
    Korotin, Alexander
    Li, Lingxiao
    Genevay, Aude
    Solomon, Justin
    Burnaev, Evgeny
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [39] Efficient modified techniques of invariant energy quadratization approach for gradient flows
    Liu, Zhengguang
    Li, Xiaoli
    APPLIED MATHEMATICS LETTERS, 2019, 98 : 206 - 214
  • [40] ON GRADIENT FLOWS INITIALIZED NEAR MAXIMA
    Belabbas, Mohamed-Ali
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (05) : 2826 - 2848