GRADIENT FLOWS FOR COUPLING ORDER PARAMETERS AND MECHANICS

被引:3
作者
Schmeller, Leonie [1 ]
Peschka, Dirk [1 ]
机构
[1] Weierstrass Inst, D-10117 Berlin, Germany
关键词
Key words; gradient flows; incremental minimization; phase fields; finite strain; gels; PHASE-FIELD MODEL; DIFFUSE-INTERFACE METHODS; LARGE DEFORMATIONS; NUMERICAL-SIMULATION; EQUATIONS; EVOLUTION; ENERGY; FLUIDS; DAMAGE; CAHN;
D O I
10.1137/22M148478X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a formal gradient flow structure for phase-field evolution coupled to mechanics in Lagrangian coordinates, present common ways to couple the evolution, and provide an incremental minimization strategy. While the usual presentation of continuum mechanics is intentionally brief, we construct an extensible functional analytical framework and a discretization approach that preserves the underlying variational structure. We consider phase separation and swelling of gels and then study stationary states of multiphase systems with surface tension and contact lines and show the robustness of the general approach for large deformations. We highlight differences between compressible and incompressible models and discuss issues of the sharp-interface limit for different magnitudes of the Cahn-Hilliard mobility.
引用
收藏
页码:225 / 253
页数:29
相关论文
共 50 条
  • [1] On the SAV-DG method for a class of fourth order gradient flows
    Liu, Hailiang
    Yin, Peimeng
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (02) : 1185 - 1200
  • [2] High-order energy stable discrete variational derivative schemes for gradient flows
    Huang, Jizu
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024,
  • [3] A variant of scalar auxiliary variable approaches for gradient flows
    Hou, Dianming
    Azaiez, Mejdi
    Xu, Chuanju
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 395 : 307 - 332
  • [4] The scalar auxiliary variable (SAV) approach for gradient flows
    Shen, Jie
    Xu, Jie
    Yang, Jiang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 353 : 407 - 416
  • [5] GRADIENT FLOWS, SECOND-ORDER GRADIENT SYSTEMS AND CONVEXITY
    Boulmezaoud, Tahar Z.
    Cieutat, Philippe
    Daniilidis, Aris
    SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (03) : 2049 - 2066
  • [6] Maximum time step for high order BDF methods applied to gradient flows
    Pierre, Morgan
    CALCOLO, 2022, 59 (04)
  • [7] GRADIENT FLOWS OF HIGHER ORDER YANG-MILLS-HIGGS FUNCTIONALS
    Zhang, Pan
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 113 (02) : 257 - 287
  • [8] A Second-Order Length-Preserving and Unconditionally Energy Stable Rotational Discrete Gradient Method for Oseen-Frank Gradient Flows
    Xu, Jie
    Yang, Xiaotian
    Yang, Zhiguo
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2024, 35 (02) : 369 - 394
  • [9] A classification of higher-order strain-gradient models in damage mechanics
    H. Askes
    L. J. Sluys
    Archive of Applied Mechanics, 2003, 73 : 448 - 465
  • [10] ON GRADIENT STRUCTURES FOR MARKOV CHAINS AND THE PASSAGE TO WASSERSTEIN GRADIENT FLOWS
    Disser, Karoline
    Liero, Matthias
    NETWORKS AND HETEROGENEOUS MEDIA, 2015, 10 (02) : 233 - 253