Electrical manipulation and detection of antiferromagnetism in magnetic tunnel junctions

被引:47
作者
Du, Ao [1 ]
Zhu, Daoqian [1 ]
Cao, Kaihua [1 ,2 ]
Zhang, Zhizhong [1 ,3 ,4 ]
Guo, Zongxia [1 ]
Shi, Kewen [1 ]
Xiong, Danrong [1 ]
Xiao, Rui [1 ]
Cai, Wenlong [1 ]
Yin, Jialiang [1 ,2 ]
Lu, Shiyang [1 ]
Zhang, Cong [2 ]
Zhang, Yue [1 ]
Luo, Shijiang [5 ]
Fert, Albert [1 ,6 ]
Zhao, Weisheng [1 ,2 ]
机构
[1] Beihang Univ, Fert Beijing Inst, Sch Integrated Circuit Sci & Engn, Beijing, Peoples R China
[2] Beihang Univ, Beihang Goertek Joint Microelect Inst, Qingdao Res Inst, Qingdao, Peoples R China
[3] Beihang Univ, Sch Mat Sci & Engn, Beijing, Peoples R China
[4] Beihang Univ, Hangzhou Innovat Inst Yuhang, Hangzhou, Peoples R China
[5] Huawei Technol Co Ltd, Cent Res Inst, Adv Comp & Storage Lab, Shenzhen, Peoples R China
[6] Univ Paris Saclay, Univ Paris Sud, CNRS, Unite Mixte Phys, Palaiseau, France
基金
中国国家自然科学基金;
关键词
SPIN-ORBIT; ROOM-TEMPERATURE; MAGNETORESISTANCE; TORQUE; SPINTRONICS;
D O I
10.1038/s41928-023-00975-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Antiferromagnetism of the IrMn layer in Pt/IrMn/CoFeB/MgO/CoFeB three-terminal magnetic tunnel junctions can be electrically detected using tunnelling magnetoresistance and controlled by a spin-orbit torque generated by a 0.8 ns current pulse applied across the heavy-metal platinum layer. Electrical manipulation and detection of antiferromagnetic order could be used to create reliable and fast spintronic memory devices. The state of antiferromagnets can be read out using signals such as the anisotropic magnetoresistance and anomalous Hall effect, but these signals remain low, which restricts device development. Here we report the electrical detection of antiferromagnetism in Pt/IrMn/CoFeB/MgO/CoFeB three-terminal magnetic tunnel junctions using tunnelling magnetoresistance. We measure a tunnelling magnetoresistance ratio of over 80%, which is achieved by imprinting the antiferromagnetic state of IrMn on the ferromagnetic CoFeB free layer. We show current-polarity-dependent switching of IrMn down to 0.8 ns and identify two switching mechanisms: a heat-driven mode and a spin-orbit-torque-driven mode. The dominant switching mechanism depends on the current pulse width. Numerical simulations suggest that the spin-orbit torque generated by Pt induces the precession of IrMn moments and that exchange coupling at the IrMn/CoFeB interface determines the switching polarity of IrMn.
引用
收藏
页码:425 / 433
页数:9
相关论文
共 49 条
  • [1] Nanosecond-Timescale Low Energy Switching of In-Plane Magnetic Tunnel Junctions through Dynamic Oersted-Field-Assisted Spin Hall Effect
    Aradhya, S. V.
    Rowlands, G. E.
    Oh, J.
    Ralph, D. C.
    Buhrman, R. A.
    [J]. NANO LETTERS, 2016, 16 (10) : 5987 - 5992
  • [2] Observation of current-induced switching in non-collinear antiferromagnetic IrMn3 by differential voltage measurements
    Arpaci, Sevdenur
    Lopez-Dominguez, Victor
    Shi, Jiacheng
    Sanchez-Tejerina, Luis
    Garesci, Francesca
    Wang, Chulin
    Yan, Xueting
    Sangwan, Vinod K.
    Grayson, Matthew A.
    Hersam, Mark C.
    Finocchio, Giovanni
    Amiri, Pedram Khalili
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [3] Mechanism of Neel Order Switching in Antiferromagnetic Thin Films Revealed by Magnetotransport and Direct Imaging
    Baldrati, L.
    Gomonay, O.
    Ross, A.
    Filianina, M.
    Lebrun, R.
    Ramos, R.
    Leveille, C.
    Fuhrmann, F.
    Forrest, T. R.
    Maccherozzi, F.
    Valencia, S.
    Kronast, F.
    Saitoh, E.
    Sinova, J.
    Klaeui, M.
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (17)
  • [4] Antiferromagnetic spintronics
    Baltz, V.
    Manchon, A.
    Tsoi, M.
    Moriyama, T.
    Ono, T.
    Tserkovnyak, Y.
    [J]. REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
  • [5] Electric field control of Neel spin-orbit torque in an antiferromagnet
    Chen, Xianzhe
    Zhou, Xiaofeng
    Cheng, Ran
    Song, Cheng
    Zhang, Jia
    Wu, Yichuan
    Ba, You
    Li, Haobo
    Sun, Yiming
    You, Yunfeng
    Zhao, Yonggang
    Pan, Feng
    [J]. NATURE MATERIALS, 2019, 18 (09) : 931 - +
  • [6] Ultrafast switching of antiferromagnets via spin-transfer torque
    Cheng, Ran
    Daniels, Matthew W.
    Zhu, Jian-Gang
    Xiao, Di
    [J]. PHYSICAL REVIEW B, 2015, 91 (06)
  • [7] Absence of Evidence of Electrical Switching of the Antiferromagnetic Neel Vector
    Chiang, C. C.
    Huang, S. Y.
    Qu, D.
    Wu, P. H.
    Chien, C. L.
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (22)
  • [8] Opportunities and challenges for spintronics in the microelectronics industry
    Dieny, B.
    Prejbeanu, I. L.
    Garello, K.
    Gambardella, P.
    Freitas, P.
    Lehndorff, R.
    Raberg, W.
    Ebels, U.
    Demokritov, S. O.
    Akerman, J.
    Deac, A.
    Pirro, P.
    Adelmann, C.
    Anane, A.
    Chumak, A. V.
    Hirohata, A.
    Mangin, S.
    Valenzuela, Sergio O.
    Onbasli, M. Cengiz
    D'Aquino, M.
    Prenat, G.
    Finocchio, G.
    Lopez-Diaz, L.
    Chantrell, R.
    Chubykalo-Fesenko, O.
    Bortolotti, P.
    [J]. NATURE ELECTRONICS, 2020, 3 (08) : 446 - 459
  • [9] Tunneling Magnetoresistance in Noncollinear Antiferromagnetic Tunnel Junctions
    Dong, Jianting
    Li, Xinlu
    Gurung, Gautam
    Zhu, Meng
    Zhang, Peina
    Zheng, Fanxing
    Tsymbal, Evgeny Y.
    Zhang, Jia
    [J]. PHYSICAL REVIEW LETTERS, 2022, 128 (19)
  • [10] Spin-orbit torque switching of an antiferromagnetic metallic heterostructure
    DuttaGupta, Samik
    Kurenkov, A.
    Tretiakov, Oleg A.
    Krishnaswamy, G.
    Sala, G.
    Krizakova, V.
    Maccherozzi, F.
    Dhesi, S. S.
    Gambardella, P.
    Fukami, S.
    Ohno, H.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)