Application of multivariate bilinear neural network method to fractional partial differential equations

被引:37
作者
Liu, Jian-Guo [1 ]
Zhu, Wen-Hui [2 ]
Wu, Ya-Kui [3 ]
Jin, Guo-Hua [1 ]
机构
[1] Jiangxi Univ Chinese Med, Coll Comp, Nanchang 330004, Jiangxi, Peoples R China
[2] Inst Artificial Intelligence, Nanchang Inst Sci & Technol, Nanchang 330108, Jiangxi, Peoples R China
[3] Jiujiang Univ, Sch Sci, Jiujiang 332005, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Multivariate bilinear neural network method; Calogero-Bogoyavlensky-Schiff- Bogoyavlensky-Konopelchenko equation; Fractional; SOLITARY WAVE; LUMP;
D O I
10.1016/j.rinp.2023.106341
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, a multivariate bilinear neural network method is proposed to seek more exact analytical solutions of nonlinear partial differential equations. As an example, the (2+1)-dimensional fractional generalized Calogero-Bogoyavlensky-Schiff-Bogoyavlensky-Konopelchenko equation is investigated via selecting the 3-2-2-1, 3-2-3-1 and 3-3-2-1 models, respectively. The exact analytical solutions with several arbitrary activation functions are derived and the dynamics properties are shown in some three-dimensional and density maps by choosing different activation functions.
引用
收藏
页数:5
相关论文
共 34 条
[1]   Observation of a group of dark rogue waves in a telecommunication optical fiber [J].
Baronio, F. ;
Frisquet, B. ;
Chen, S. ;
Millot, G. ;
Wabnitz, S. ;
Kibler, B. .
PHYSICAL REVIEW A, 2018, 97 (01)
[2]   Resonant radiation from Peregrine solitons [J].
Baronio, Fabio ;
Chen, Shihua ;
Trillo, Stefano .
OPTICS LETTERS, 2020, 45 (02) :427-430
[3]   Dynamics and bifurcations of a discrete-time Lotka-Volterra model using nonstandard finite difference discretization method [J].
Eskandari, Zohreh ;
Avazzadeh, Zakieh ;
Ghaziani, Reza Khoshsiar ;
Li, Bo .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022,
[4]   Data-driven soliton solutions and model parameters of nonlinear wave models via the conservation-law constrained neural network method [J].
Fang, Yin ;
Wu, Gang-Zhou ;
Kudryashov, Nikolay A. ;
Wang, Yue-Yue ;
Dai, Chao-Qing .
CHAOS SOLITONS & FRACTALS, 2022, 158
[5]   Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results [J].
Jumarie, G. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (9-10) :1367-1376
[6]   Optical soliton solutions of variable coefficient Biswas-Milovic (BM) model comprising Kerr law and damping effect [J].
Kaur, Lakhveer ;
Wazwaz, Abdul-Majid .
OPTIK, 2022, 266
[7]   Einstein's vacuum field equation: Painleve analysis and Lie symmetries [J].
Kaur, Lakhveer ;
Wazwaz, Abdul-Majid .
WAVES IN RANDOM AND COMPLEX MEDIA, 2021, 31 (02) :199-206
[8]   Bright - dark optical solitons for Schrodinger-Hirota equation with variable coefficients [J].
Kaur, Lakhveer ;
Wazwaz, Abdul-Majid .
OPTIK, 2019, 179 :479-484
[9]   Lump, breather and solitary wave solutions to new reduced form of the generalized BKP equation [J].
Kaur, Lakhveer ;
Wazwaz, Abdul-Majid .
INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2019, 29 (02) :569-579
[10]   Solitary and rogue waves with controllable backgrounds for the non-autonomous generalized AB system [J].
Lan, Zhong-Zhou ;
Su, Jing-Jing .
NONLINEAR DYNAMICS, 2019, 96 (04) :2535-2546