Lower Bounds for Possibly Divergent Probabilistic Programs

被引:4
作者
Feng, Shenghua [1 ]
Chen, Mingshuai [2 ]
Su, Han [1 ]
Kaminski, Benjamin Lucien [3 ,4 ]
Katoen, Joost-Pieter [5 ]
Zhan, Naijun [1 ]
机构
[1] Chinese Acad Sci, Univ Chinese Acad Sci, Inst Software, SKLCS, Beijing, Peoples R China
[2] Zhejiang Univ, Hangzhou, Peoples R China
[3] Saarland Univ, Saarland Informat Campus, Saarbrucken, Germany
[4] UCL, London, England
[5] Rhein Westfal TH Aachen, Aachen, Germany
来源
PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL | 2023年 / 7卷 / OOPSLA期
基金
国家重点研发计划;
关键词
probabilistic programs; quantitative verification; weakest preexpectations; lower bounds; almost-sure termination; uniform integrability; INVARIANT GENERATION; MODEL CHECKING; BISIMULATION; SEMANTICS;
D O I
10.1145/3586051
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a new proof rule for verifying lower bounds on quantities of probabilistic programs. Our proof rule is not confined to almost-surely terminating programs - as is the case for existing rules - and can be used to establish non-trivial lower bounds on, e.g., termination probabilities and expected values, for possibly divergent probabilistic loops, e.g., the well-known three-dimensional random walk on a lattice.
引用
收藏
页数:31
相关论文
共 102 条
[1]  
Abraham Erika, 2014, Formal Methods for Executable Software Models. 14th International School on Formal Methods for the Design of Computer, Communication, and Software Systems, SFM 2014. Advanced Lectures: LNCS 8483, P65, DOI 10.1007/978-3-319-07317-0_3
[2]  
Aguirre A., 2021, P ACM PROGRAMMING LA, P1
[3]   FAST RANDOMIZED CONSENSUS USING SHARED MEMORY [J].
ASPNES, J ;
HERLIHY, M .
JOURNAL OF ALGORITHMS, 1990, 11 (03) :441-461
[4]   Proofs of randomized algorithms in COQ [J].
Audebaud, Philippe ;
Paulin-Mohring, Christine .
SCIENCE OF COMPUTER PROGRAMMING, 2009, 74 (08) :568-589
[5]  
Baier C, 2008, PRINCIPLES OF MODEL CHECKING, P1
[6]   Ensuring the Reliability of Your Model Checker: Interval Iteration for Markov Decision Processes [J].
Baier, Christel ;
Klein, Joachim ;
Leuschner, Linda ;
Parker, David ;
Wunderlich, Sascha .
COMPUTER AIDED VERIFICATION, CAV 2017, PT I, 2017, 10426 :160-180
[7]   Fixpoint Theory - Upside Down [J].
Baldan, Paolo ;
Eggert, Richard ;
Koenig, Barbara ;
Padoan, Tommaso .
FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES, FOSSACS 2021, 2021, 12650 :62-81
[8]   Data-Driven Invariant Learning for Probabilistic Programs [J].
Bao, Jialu ;
Trivedi, Nitesh ;
Pathak, Drashti ;
Hsu, Justin ;
Roy, Subhajit .
COMPUTER AIDED VERIFICATION (CAV 2022), PT I, 2022, 13371 :33-54
[9]  
Barthe Gilles, 2012, Mathematics of Program Construction. Proceedings 11th International Conference, MPC 2012, P1, DOI 10.1007/978-3-642-31113-0_1
[10]  
Barthe G., 2020, FDN PROBABILISTIC PR