Total restrained Roman domination

被引:2
作者
Amjadi, Jafar [1 ]
Samadi, Babak [2 ]
Volkmann, Lutz [3 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[2] Alzahra Univ, Fac Math Sci, Dept Math, Tehran, Iran
[3] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
关键词
Total restrained domination; total restrained Roman domination; total restrained Roman domination number;
D O I
10.22049/CCO.2022.27628.1303
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph with vertex set V (G). A Roman dominating function (RDF) on a graph G is a function f : V (G) ->{0, 1, 2} such that every vertex v with f(v) = 0 is adjacent to a vertex u with f(u) = 2. If f is an RDF on G, then let V-i = {v is an element of V (G) : f(v) = i} for i is an element of {0; 1; 2}. An RDF f is called a restrained (total) Roman dominating function if the subgraph induced by V0 (induced by V-1 boolean OR V-2) has no isolated vertex. A total and restrained Roman dominating function is a total restrained Roman dominating function. The total restrained Roman domination number gamma(trR)(G) on a graph G is the minimum weight of a total restrained Roman dominating function on the graph G. We initiate the study of total restrained Roman domination number and present several sharp bounds on gamma(trR)(G). In addition, we determine this parameter for some classes of graphs.
引用
收藏
页码:575 / 587
页数:13
相关论文
共 15 条
[1]  
Ahangar HA, 2020, ARS COMBINATORIA, V150, P225
[2]  
Ahangar HA, 2016, COMMUN COMB OPTIM, V1, P75, DOI [10.22049/cco.2016.13556, 10.22049/cco.2016.13556, DOI 10.22049/CCO.2016.13556]
[3]   TOTAL ROMAN DOMINATION IN GRAPHS [J].
Ahangar, Hossein Abdollahzadeh ;
Henning, Michael A. ;
Samodivkin, Vladimir ;
Yero, Ismael G. .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (02) :501-517
[4]   A characterization relating domination, semitotal domination and total Roman domination in trees [J].
Cabrera Martinez, Abel ;
Martinez Arias, Alondra ;
Menendez Castillo, Maikel .
COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, 6 (02) :197-209
[5]   Further Results on the Total Roman Domination in Graphs [J].
Cabrera Martinez, Abel ;
Cabrera Garcia, Suitberto ;
Carrion Garcia, Andres .
MATHEMATICS, 2020, 8 (03)
[6]   Varieties of Roman domination II [J].
Chellali, M. ;
Jafari Rad, N. ;
Sheikholeslami, S. M. ;
Volkmann, L. .
AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) :966-984
[7]  
Chellali M., 2020, Roman Domination in Graphs, P365
[8]  
Chellali M., 2021, Varieties of Roman domination in graphs, P273
[9]   Roman domination in graphs [J].
Cockayne, EJ ;
Dreyer, PA ;
Hedetniemi, SM ;
Hedetniemi, ST .
DISCRETE MATHEMATICS, 2004, 278 (1-3) :11-22
[10]  
Garey M. R., 1979, Computers and intractability. A guide to the theory of NP-completeness