Weak limited sets and operators on Banach lattices

被引:1
作者
Afkir, Farid [1 ]
Elbour, Aziz [1 ]
机构
[1] Moulay Ismail Univ, Fac Sci & Technol, Dept Math, Pob 509, Errachidia 52000, Morocco
关键词
Primary; Secondary; Weak limited set; weakly precompact set; weak limited operator; Dunford-Pettis operator; Banach lattice; order continuous norm;
D O I
10.2989/16073606.2021.1990156
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that an operator T : E -> F , between two Banach lattices, maps order intervals onto weak limited sets if and only if the modulus |ST| exists and is Dunford-Pettis for every Dunford-Pettis operator S : F -> c0. Next, we establish that a Banach lattice E does not contain any isomorphic copy of l(1) if and only if the order intervals of E are weak limited and the norm of E ' is order continuous. We also investigate the domination problem of the class of weak limited operators.
引用
收藏
页码:49 / 55
页数:7
相关论文
共 11 条
  • [1] Aliprantis Charalambos D., 1985, POSITIVE OPERATORS, V119, DOI 10.1007/978-1-4020-5008-4
  • [2] Characterization of the order weak compactness of semi-compact operators
    Aqzzouz, Belmesnaou
    Elbour, Aziz
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 355 (02) : 541 - 547
  • [3] (L) SETS AND ALMOST (L) SETS IN BANACH LATTICES
    Aqzzouz, Belmesnaoui
    Bouras, Khalid
    [J]. QUAESTIONES MATHEMATICAE, 2013, 36 (01) : 107 - 118
  • [4] OPERATORS HAVING WEAKLY PRECOMPACT ADJOINTS
    BATOR, EM
    LEWIS, PW
    [J]. MATHEMATISCHE NACHRICHTEN, 1992, 157 : 99 - 103
  • [5] LIMITED OPERATORS AND STRICT COSINGULARITY
    BOURGAIN, J
    DIESTEL, J
    [J]. MATHEMATISCHE NACHRICHTEN, 1984, 119 : 55 - 58
  • [6] COMPACT-OPERATORS IN BANACH-LATTICES
    DODDS, PG
    FREMLIN, DH
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1979, 34 (04) : 287 - 320
  • [7] Emmanuele G., 1986, B POLISH ACAD SCI MA, V34, P155
  • [8] A NOTE ON WEAK RECIPROCAL DUNFORD-PETTIS SETS
    Ghenciu, I.
    [J]. ACTA MATHEMATICA HUNGARICA, 2017, 152 (02) : 453 - 463
  • [9] Meyer-Nieberg P., 1991, BANACH LATTICES
  • [10] Schaefer HH., 1974, Banach Lattices and Positive Operators, DOI DOI 10.1007/978-3-642-65970-6