Single-Stage Related Object Detection for Intelligent Industrial Surveillance

被引:2
作者
Zhang, Yang [1 ,2 ,3 ]
Bai, Hao [1 ,2 ]
Xu, Yuan [1 ,2 ]
He, Yanlin [1 ,2 ]
Zhu, Qunxiong [1 ,2 ]
Sheng, Hao [4 ]
机构
[1] Beijing Univ Chem Technol BUCT, Coll Informat Sci & Technol, Beijing 100013, Peoples R China
[2] Minist Educ China, Engn Res Ctr Intelligent PSE, Beijing 100029, Peoples R China
[3] Beihang Univ, Inst Int Innovat, Key Lab Data Sci & Intelligent Comp, Hangzhou 311115, Peoples R China
[4] Beihang Univ, Zhongfa Aviat Inst, Hangzhou 311115, Peoples R China
基金
中国国家自然科学基金;
关键词
Context relation; industrial surveillance; object detection; safe production; single stage;
D O I
10.1109/TII.2023.3331545
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Detecting the position and safe wearing of workers is an significant topic in industrial production. However, mainstream detectors aware object instances individually instead of exploring contextual information. In this article, a relation extraction module (REM) is proposed to introduce local and global contexts at the same time. It processes a set of anchors simultaneously through interaction between their appearance feature and location, thus allowing building local context and generating enhanced anchors. It can be plugged into most popular detectors without additional labeling. Experiments on public datasets and onsite surveillance video indicate that REM improves the accuracy of single-stage detectors especially small models while maintains real-time performance. A real-time intelligent surveillance system has already been established and applied in the factory, which makes great significance to the management of safety supervision departments.
引用
收藏
页码:5539 / 5549
页数:11
相关论文
共 50 条
[21]   Rethinking IoU-based Optimization for Single-stage 3D Object Detection [J].
Sheng, Hualian ;
Cai, Sijia ;
Zhao, Na ;
Deng, Bing ;
Huang, Jianqiang ;
Hua, Xian-Sheng ;
Zhao, Min-Jian ;
Lee, Gim Hee .
COMPUTER VISION, ECCV 2022, PT IX, 2022, 13669 :544-561
[22]   Single-Stage Rotation-Decoupled Detector for Oriented Object [J].
Zhong, Bo ;
Ao, Kai .
REMOTE SENSING, 2020, 12 (19) :1-13
[23]   Single-stage zero-shot object detection network based on CLIP and pseudo-labeling [J].
Li, Jiafeng ;
Sun, Shengyao ;
Zhang, Kang ;
Zhang, Jing ;
Zhuo, Li .
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2025, 16 (02) :1055-1070
[24]   ESA-SSD: single-stage object detection network using deep hierarchical feature learning [J].
Hui Liu ;
Zhenyang Dong .
Multimedia Tools and Applications, 2024, 83 :56207-56228
[25]   Overview of single-stage object detection models: from Yolov1 to Yolov7 [J].
Yasmine, Ghazlane ;
Maha, Gmira ;
Hicham, Medromi .
2023 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2023, :1579-1584
[26]   Revealing the Unseen: A Single-Stage Attention Based Occluded Object Detection Model in Remote Sensing Imagery [J].
Saini, Nandini ;
Chattopadhyay, Chiranjoy ;
Das, Debasis .
PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2023, 2023, 14301 :540-547
[27]   ESA-SSD: single-stage object detection network using deep hierarchical feature learning [J].
Liu, Hui ;
Dong, Zhenyang .
MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (18) :56207-56228
[28]   Mask SSD: An Effective Single-Stage Approach to Object Instance Segmentation [J].
Zhang, Hui ;
Tian, Yonglin ;
Wang, Kunfeng ;
Zhang, Wensheng ;
Wang, Fei-Yue .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (01) :2078-2093
[29]   CenterPoint-SE: A Single-Stage Anchor-Free 3-D Object Detection Algorithm With Spatial Awareness Enhancement [J].
Wang, Hai ;
Tao, Le ;
Cai, Yingfeng ;
Chen, Long ;
Li, Yicheng ;
Sotelo, Miguel Angel ;
Li, Zhixiong .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (10) :10760-10773
[30]   Multi-feature enhancement based on sparse networks for single-stage 3D object detection [J].
Ke, Zunwang ;
Lin, Chenyu ;
Zhang, Tao ;
Jia, Tingting ;
Du, Minghua ;
Wang, Gang ;
Zhang, Yugui .
ALEXANDRIA ENGINEERING JOURNAL, 2025, 111 :123-135