Upper triangulation-based infinity norm bounds for the inverse of Nekrasov matrices with applications

被引:3
作者
Gao, Lei [1 ]
Gu, Xian-Ming [2 ]
Jia, Xiudan [3 ]
Li, Chaoqian [4 ]
机构
[1] Yanan Univ, Coll Math & Comp Sci, Yanan 716000, Peoples R China
[2] Southwestern Univ Finance & Econ, Sch Math, Chengdu 611130, Peoples R China
[3] Baoji Univ Arts & Sci, Sch Math & Informat Sci, Baoji 721013, Peoples R China
[4] Yunnan Univ, Sch Math & Stat, Kunming 650091, Peoples R China
关键词
Nekrasov matrix; Infinity norm; Linear complementarity problem; Iterative matrix; All-at-once system; LINEAR COMPLEMENTARITY-PROBLEMS; ERROR-BOUNDS; ACCURATE;
D O I
10.1007/s11075-024-01758-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The infinity norm bounds for the inverse of Nekrasov matrices play an important role in scientific computing. We in this paper propose a triangulation-based approach that can easily be implemented to seek sharper infinity norm bounds for the inverse of Nekrasov matrices. With the help of such sharper bounds, new error estimates for the linear complementarity problem of Nekrasov matrices are presented, and a new infinity norm estimate of the iterative matrix of parallel-in-time methods for an all-at-once system from Volterra partial integral-differential problems is given. Finally, these new bounds are compared with other state-of-the-art results so that the effectiveness of our proposed results is verified.
引用
收藏
页码:1453 / 1479
页数:27
相关论文
共 33 条
[1]  
Berman A., 1979, NONNEGATIVE MATRICES, V1st
[2]   PERTURBATION BOUNDS OF P-MATRIX LINEAR COMPLEMENTARITY PROBLEMS [J].
Chen, Xiaojun ;
Xiang, Shuhuang .
SIAM JOURNAL ON OPTIMIZATION, 2008, 18 (04) :1250-1265
[3]   Computation of error bounds for P-matrix linear complementarity problems [J].
Chen, XJ ;
Xiang, SH .
MATHEMATICAL PROGRAMMING, 2006, 106 (03) :513-525
[4]  
Cottle RW, 2009, CLASS APPL MATH, V60, P1, DOI 10.1137/1.9780898719000
[5]   Infinity norm bounds for the inverse of Nekrasov matrices [J].
Cvetkovic, Ljiljana ;
Dai, Ping-Fan ;
Doroslovacki, Ksenija ;
Li, Yao-Tang .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (10) :5020-5024
[6]   Max-norm bounds for the inverse of S-Nekrasov matrices [J].
Cvetkovic, Ljiljana ;
Kostic, Vladimir ;
Doroslovacki, Ksenija .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (18) :9498-9503
[7]   Notes on New Error Bounds for Linear Complementarity Problems of Nekrasov Matrices, B-Nekrasov Matrices and QN-Matrices [J].
Dai, Ping-Fan ;
Li, Jicheng ;
Bai, Jianchao ;
Dong, Liqiang .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2019, 12 (04) :1191-1212
[8]   Error bounds for linear complementarity problems of QN-matrices [J].
Dai, Ping-Fan ;
Li, Ji-Cheng ;
Li, Yao-Tang ;
Zhang, Cheng-Yi .
CALCOLO, 2016, 53 (04) :647-657
[9]   Accurate SVDs of weakly diagonally dominant M-matrices [J].
Demmel, J ;
Koev, P .
NUMERISCHE MATHEMATIK, 2004, 98 (01) :99-104
[10]  
Demmel J, 2008, ACTA NUMER, V17, P87, DOI 10.1017/S0962492906350015