Multiparametric hippocampal signatures for early diagnosis of Alzheimer's disease using 18F-FDG PET/MRI Radiomics

被引:7
作者
Chen, Zhigeng [1 ,2 ,3 ]
Bi, Sheng [1 ,2 ,3 ]
Shan, Yi [1 ,2 ,3 ]
Cui, Bixiao [1 ,2 ,3 ]
Yang, Hongwei [1 ,2 ,3 ]
Qi, Zhigang [1 ,2 ,3 ]
Zhao, Zhilian [1 ,2 ,3 ]
Han, Ying [4 ]
Yan, Shaozhen [1 ,2 ,3 ]
Lu, Jie [1 ,2 ,3 ]
机构
[1] Capital Med Univ, Xuanwu Hosp, Dept Radiol & Nucl Med, 45 Changchun St, Beijing 100053, Peoples R China
[2] Beijing Key Lab Magnet Resonance Imaging & Brain I, Beijing, Peoples R China
[3] Minist Educ, Key Lab Neurodegenerat Dis, Beijing, Peoples R China
[4] Capital Med Univ, Xuanwu Hosp, Dept Neurol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Alzheimer's disease; early diagnosis; hippocampal radiomics; machine learning; PET/MRI; MILD COGNITIVE IMPAIRMENT; FDG-PET; SEGMENTATION; BRAIN; MRI;
D O I
10.1111/cns.14539
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Purpose This study aimed to explore the utility of hippocampal radiomics using multiparametric simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) for early diagnosis of Alzheimer's disease (AD).Methods A total of 53 healthy control (HC) participants, 55 patients with amnestic mild cognitive impairment (aMCI), and 51 patients with AD were included in this study. All participants accepted simultaneous PET/MRI scans, including F-18-fluorodeoxyglucose (F-18-FDG) PET, 3D arterial spin labeling (ASL), and high-resolution T1-weighted imaging (3D T1WI). Radiomics features were extracted from the hippocampus region on those three modal images. Logistic regression models were trained to classify AD and HC, AD and aMCI, aMCI and HC respectively. The diagnostic performance and radiomics score (Rad-Score) of logistic regression models were evaluated from 5-fold cross-validation.Results The hippocampal radiomics features demonstrated favorable diagnostic performance, with the multimodal classifier outperforming the single-modal classifier in the binary classification of HC, aMCI, and AD. Using the multimodal classifier, we achieved an area under the receiver operating characteristic curve (AUC) of 0.98 and accuracy of 96.7% for classifying AD from HC, and an AUC of 0.86 and accuracy of 80.6% for classifying aMCI from HC. The value of Rad-Score differed significantly between the AD and HC (p < 0.001), aMCI and HC (p < 0.001) groups. Decision curve analysis showed superior clinical benefits of multimodal classifiers compared to neuropsychological tests.Conclusion Multiparametric hippocampal radiomics using PET/MRI aids in the identification of early AD, and may provide a potential biomarker for clinical applications.
引用
收藏
页数:11
相关论文
共 43 条
[1]   Characterizing the human hippocampus in aging and Alzheimer's disease using a computational atlas derived from ex vivo MRI and histology [J].
Adler, Daniel H. ;
Wisse, Laura E. M. ;
Ittyerah, Ranjit ;
Pluta, John B. ;
Ding, Song-Lin ;
Xie, Long ;
Wang, Jiancong ;
Kadivar, Salmon ;
Robinson, John L. ;
Schuck, Theresa ;
Trojanowski, John Q. ;
Grossman, Murray ;
Detre, John A. ;
Elliott, Mark A. ;
Toledo, Jon B. ;
Liu, Weixia ;
Pickup, Stephen ;
Miller, Michael I. ;
Das, Sandhitsu R. ;
Wolk, David A. ;
Yushkevich, Paul A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (16) :4252-4257
[2]   Longitudinal PET evaluation of cerebral metabolic decline in dementia: A potential outcome measure in Alzheimer's disease treatment studies [J].
Alexander, GE ;
Chen, K ;
Pietrini, P ;
Rapoport, SI ;
Reiman, EM .
AMERICAN JOURNAL OF PSYCHIATRY, 2002, 159 (05) :738-745
[3]   Radiomics Analysis of Brain [18F]FDG PET/CT to Predict Alzheimer's Disease in Patients with Amyloid PET Positivity: A Preliminary Report on the Application of SPM Cortical Segmentation, Pyradiomics and Machine-Learning Analysis [J].
Alongi, Pierpaolo ;
Laudicella, Riccardo ;
Panasiti, Francesco ;
Stefano, Alessandro ;
Comelli, Albert ;
Giaccone, Paolo ;
Arnone, Annachiara ;
Minutoli, Fabio ;
Quartuccio, Natale ;
Cupidi, Chiara ;
Arnone, Gaspare ;
Piccoli, Tommaso ;
Grimaldi, Luigi Maria Edoardo ;
Baldari, Sergio ;
Russo, Giorgio .
DIAGNOSTICS, 2022, 12 (04)
[4]   Recommended Implementation of Arterial Spin-Labeled Perfusion MRI for Clinical Applications: A Consensus of the ISMRM Perfusion Study Group and the European Consortium for ASL in Dementia [J].
Alsop, David C. ;
Detre, John A. ;
Golay, Xavier ;
Guenther, Matthias ;
Hendrikse, Jeroen ;
Hernandez-Garcia, Luis ;
Lu, Hanzhang ;
MacIntosh, Bradley J. ;
Parkes, Laura M. ;
Smits, Marion ;
van Osch, Matthias J. P. ;
Wang, Danny J. J. ;
Wong, Eric C. ;
Zaharchuk, Greg .
MAGNETIC RESONANCE IN MEDICINE, 2015, 73 (01) :102-116
[5]   2023 Alzheimer's disease facts and figures [J].
不详 .
ALZHEIMERS & DEMENTIA, 2023, 19 (04) :1598-1695
[6]   Artificial intelligence and neuropsychological measures: The case of Alzheimer's disease [J].
Battista, Petronilla ;
Salvatore, Christian ;
Berlingeri, Manuela ;
Cerasa, Antonio ;
Castiglioni, Isabella .
NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2020, 114 :211-228
[7]   Results and insights from a phase I clinical trial of Lomecel-B for Alzheimer's disease [J].
Brody, Mark ;
Agronin, Marc ;
Herskowitz, Brad J. ;
Bookheimer, Susan Y. ;
Small, Gary W. ;
Hitchinson, Benjamin ;
Ramdas, Kevin ;
Wishard, Tyler ;
McInerney, Katalina Fernandez ;
Vellas, Bruno ;
Sierra, Felipe ;
Jiang, Zhijie ;
Mcclain-Moss, Lisa ;
Perez, Carmen ;
Fuquay, Ana ;
Rodriguez, Savannah ;
Hare, Joshua M. ;
Oliva, Anthony A., Jr. ;
Baumel, Bernard .
ALZHEIMERS & DEMENTIA, 2023, 19 (01) :261-273
[8]   Ten years of image analysis and machine learning competitions in dementia [J].
Bron, Esther E. ;
Klein, Stefan ;
Reinke, Annika ;
Papma, Janne M. ;
Maier-Hein, Lena ;
Alexander, Daniel C. ;
Oxtoby, Neil P. .
NEUROIMAGE, 2022, 253
[9]   Safety and efficacy of pioglitazone for the delay of cognitive impairment in people at risk of Alzheimer's disease (TOMMORROW): a prognostic biomarker study and a phase 3, randomised, double-blind, placebo-controlled trial [J].
Burns, Daniel K. ;
Alexander, Robert C. ;
Welsh-Bohmer, Kathleen A. ;
Culp, Meredith ;
Chiang, Carl ;
O'Neil, Janet ;
Evans, Rebecca M. ;
Harrigan, Patrick ;
Plassman, Brenda L. ;
Burke, James R. ;
Wu, Jingtao ;
Lutz, Michael W. ;
Haneline, Stephen ;
Schwarz, Adam J. ;
Schneider, Lon S. ;
Yaffe, Kristine ;
Saunders, Ann M. ;
Ratti, Emiliangelo .
LANCET NEUROLOGY, 2021, 20 (07) :537-547
[10]   Voxel-level comparison of arterial spin-labeled perfusion MRI and FDG-PET in Alzheimer disease [J].
Chen, Y. ;
Wolk, D. A. ;
Eddin, J. S. R. ;
Korczykowski, M. ;
Martinez, P. M. ;
Pvlusiek, E. S. ;
Newberg, A. B. ;
Julin, P. ;
Arnold, S. E. ;
Greenberg, J. H. ;
Detre, J. A. .
NEUROLOGY, 2011, 77 (22) :1977-1985