Detection and quantification of pulmonary embolism with artificial intelligence: The SFR 2022 artificial intelligence data challenge

被引:8
作者
Belkouchia, Younes [1 ,2 ]
Lederlinc, Mathieu [3 ]
Ben Afiad, Amira [4 ,22 ]
Fabree, Clement [5 ]
Ferrettif, Gilbert [6 ]
De Margerieg, Constance [7 ,22 ]
Bergeh, Pierre [8 ]
Libergei, Renan [9 ]
Elbazj, Nicolas [10 ]
Blaink, Maxime [11 ]
Brilletl, Pierre-Yves [12 ]
Chassagnonm, Guillaume [13 ]
Cadourn, Farah [14 ]
Caramellao, Caroline [15 ]
El Hajjamp, Mostafa [16 ]
Boussouarq, Samia [17 ]
Hadchitir, Joya [18 ]
Fabletc, Xavier [3 ]
Khalild, Antoine [4 ,22 ]
Lucianis, Alain [19 ,23 ]
Cottent, Anne [20 ]
Mederu, Jean-Francois [21 ,22 ]
Talbota, Hugues [1 ]
Lassaub, Nathalie [2 ,18 ]
机构
[1] Univ Paris Saclay, OPIS, Cent Supelec, Inria, F-91190 Gif Sur Yvette, France
[2] Univ Paris Saclay, BIOMAPS, Inserm, CNRS,UMR 1281,CEA,Lab Imagerie Biomed Multimodale, F-94800 Villejuif, France
[3] CHU Rennes, Dept Radiol, F-35000 Rennes, France
[4] Hop Bichat Claude Bernard, APHP Nord, Dept Radiol, F-75018 Paris, France
[5] Ctr Hosp Laval, Dept Radiol, F-53000 Laval, France
[6] Univ Grenobles Alpes, CHU Grenoble Alpes, Serv Radiol & Imagerie Med, F-38000 Grenoble, France
[7] Hop St Louis, AP HP, Dept Radiol, F-75010 Paris, France
[8] CHU Angers, Dept Radiol, F-49000 Angers, France
[9] CHU Nantes, Dept Radiol, F-44000 Nantes, France
[10] Hop Europeen Georges Pompidou, AP HP, Dept Radiol, F-75015 Paris, France
[11] Hop Henri Mondor, AP HP, Dept Radiol, F-94000 Creteil, France
[12] Paris 13 Univ, Hop Avicenne, Dept Radiol, F-93000 Bobigny, France
[13] Hop Cochin, APHP, Dept Radiol, F-75014 Paris, France
[14] Hop Univ Timone, APHM, CEMEREM, F-13005 Marseille, France
[15] Grp hosp Paris St Joseph, Dept Radiol, F-75015 Paris, France
[16] UVSQ, Ambroise Pare Hosp, GH AP HP Paris Saclay, Dept Radiol,UMR 1179,INSERM,Team 3, F-92100 Boulogne Billancourt, France
[17] Sorbonne Univ, Hop Pitie Salpetriere, APHP, Unite Imagerie Cardiovasc & Thorac ICT, F-75013 Paris, France
[18] Inst Gustave Roussy, Dept Imaging, F-94800 Villejuif, France
[19] Henri Mondor Univ Hosp, AP HP, Med Imaging Dept, F-94000 Creteil, France
[20] Univ Lille, Dept Musculoskeletal Radiol, CHU Lille, MABlab ULR 4490, F-59000 Lille, France
[21] St Anne Hosp, Dept Neuroimaging, F-75013 Paris, France
[22] Univ Paris Cite, F-75006 Paris, France
[23] INSERM, U955, Team 18, F-94000 Creteil, France
关键词
Arti ficial intelligence; Deep learning; Computed tomography; Pulmonary embolism; Qanadli 's score; CT;
D O I
10.1016/j.diii.2023.05.007
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: In 2022, the French Society of Radiology together with the French Society of Thoracic Imaging and CentraleSupelec organized their 13th data challenge. The aim was to aid in the diagnosis of pulmonary embolism, by identifying the presence of pulmonary embolism and by estimating the ratio between right and left ventricular (RV/LV) diameters, and an arterial obstruction index (Qanadli's score) using artificial intelligence.Materials and methods: The data challenge was composed of three tasks: the detection of pulmonary embolism, the RV/LV diameter ratio, and Qanadli's score. Sixteen centers all over France participated in the inclusion of the cases. A health data hosting certified web platform was established to facilitate the inclusion process of the anonymized CT examinations in compliance with general data protection regulation. CT pulmonary angiography images were collected. Each center provided the CT examinations with their annotations. A randomization process was established to pool the scans from different centers. Each team was required to have at least a radiologist, a data scientist, and an engineer. Data were provided in three batches to the teams, two for training and one for evaluation. The evaluation of the results was determined to rank the participants on the three tasks.Results: A total of 1268 CT examinations were collected from the 16 centers following the inclusion criteria. The dataset was split into three batches of 310, 580 and 378 C T examinations provided to the participants respectively on September 5, 2022, October 7, 2022 and October 9, 2022. Seventy percent of the data from each center were used for training, and 30% for the evaluation. Seven teams with a total of 48 participants including data scientists, researchers, radiologists and engineering students were registered for participation. The metrics chosen for evaluation included areas under receiver operating characteristic curves, specificity and sensitivity for the classification task, and the coefficient of determination r(2) for the regression tasks. The winning team achieved an overall score of 0.784.Conclusion: This multicenter study suggests that the use of artificial intelligence for the diagnosis of pulmonary embolism is possible on real data. Moreover, providing quantitative measures is mandatory for the interpretability of the results, and is of great aid to the radiologists especially in emergency settings.(c) 2023 Societe francaise de radiologie. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:485 / 489
页数:5
相关论文
共 21 条
[1]   Multidetector computed tomography for acute pulmonary embolism: diagnosis and risk stratification in a single test [J].
Becattini, Cecilia ;
Agnelli, Giancarlo ;
Vedovati, Maria Cristina ;
Pruszczyk, Piotr ;
Casazza, Franco ;
Grifoni, Stefano ;
Salvi, Aldo ;
Bianchi, Marina ;
Douma, Renee ;
Konstantinides, Stavros ;
Lankeit, Mareike ;
Duranti, Michele .
EUROPEAN HEART JOURNAL, 2011, 32 (13) :1657-1663
[2]   Artificial intelligence in diagnostic and interventional radiology: Where are we now? [J].
Boeken, Tom ;
Feydy, Jean ;
Lecler, Augustin ;
Soyer, Philippe ;
Feydy, Antoine ;
Barat, Maxime ;
Durona, Loic .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2023, 104 (01) :1-5
[3]   The RSNA Pulmonary Embolism CT Dataset [J].
Cob, Errol ;
Kitamura, Felipe C. ;
Hobbs, Stephen B. ;
Wu, Carol C. ;
Lungren, Matthew P. ;
Prevedello, Luciano M. ;
Kalpathy-Cramer, Jayashree ;
Ball, Robyn L. ;
Shih, George ;
Stein, Anouk ;
Halabi, Safwan S. ;
Akinmakas, Emre ;
Law, Meng ;
Kumar, Parveen ;
Manzalawi, Karam A. ;
Rubio, Dennis Charles Nelson ;
Sechrist, Jacob W. ;
Germaine, Pauline ;
Lopez, Eva Castro ;
Amerio, Tomas ;
Gupta, Puslpender ;
Jain, Manoj ;
Kay, Fernando U. ;
Lin, Cheng Ting ;
Sen, Saugata ;
Revels, Jonathan Wesley ;
Brussaarel, Carok C. ;
Mongan, John .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (02) :1-7
[4]   Deep Learning-based Assessment of Oncologic Outcomes from Natural Language Processing of Structured Radiology Reports [J].
Fink, Matthias A. ;
Kades, Klaus ;
Bischoff, Arved ;
Moll, Martin ;
Schnell, Merle ;
Kuechler, Maike ;
Koehler, Gregor ;
Sellner, Jan ;
Heussel, Claus Peter ;
Kauczor, Hans-Ulrich ;
Schlemmer, Heinz-Peter ;
Maier-Hein, Klaus ;
Weber, Tim F. ;
Kleesiek, Jens .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2022, 4 (05)
[5]   Deep Learning-Based Algorithm for Automatic Detection of Pulmonary Embolism in Chest CT Angiograms [J].
Grenier, Philippe A. ;
Ayobi, Angela ;
Quenet, Sarah ;
Tassy, Maxime ;
Marx, Michael ;
Chow, Daniel S. ;
Weinberg, Brent D. ;
Chang, Peter D. ;
Chaibi, Yasmina .
DIAGNOSTICS, 2023, 13 (07)
[6]  
Huang SC, 2020, NPJ DIGIT MED, V3, DOI 10.1038/s41746-020-0266-y
[7]   Key challenges for delivering clinical impact with artificial intelligence [J].
Kelly, Christopher J. ;
Karthikesalingam, Alan ;
Suleyman, Mustafa ;
Corrado, Greg ;
King, Dominic .
BMC MEDICINE, 2019, 17 (01)
[8]   2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS) [J].
Konstantinides, Stavros V. ;
Meyer, Guy ;
Becattini, Cecilia ;
Bueno, Hector ;
Geersing, Geert-Jan ;
Harjola, Veli-Pekka ;
Huisman, Menno V. ;
Humbert, Marc ;
Jennings, Catriona Sian ;
Jimenez, David ;
Kucher, Nils ;
Lang, Irene Marthe ;
Lankeit, Mareike ;
Lorusso, Roberto ;
Mazzolai, Lucia ;
Meneveau, Nicolas ;
Ni Ainle, Fionnuala ;
Prandoni, Paolo ;
Pruszczyk, Piotr ;
Righini, Marc ;
Torbicki, Adam ;
Van Belle, Eric ;
Luis Zamorano, Jose .
EUROPEAN RESPIRATORY JOURNAL, 2019, 54 (03)
[9]   Three artificial intelligence data challenges based on CT and MRI [J].
Lassau, N. ;
Bousaid, I. ;
Chouzenoux, E. ;
Lamarque, J. P. ;
Charmettant, B. ;
Azoulay, M. ;
Cotton, F. ;
Khalil, A. ;
Lucidarme, O. ;
Pigneur, F. ;
Benaceur, Y. ;
Sadate, A. ;
Lederlin, M. ;
Laurent, F. ;
Chassagnon, G. ;
Ernst, O. ;
Ferreti, G. ;
Diascorn, Y. ;
Brillet, P. Y. ;
Creze, M. ;
Cassagnes, L. ;
Caramella, C. ;
Loubet, A. ;
Dallongeville, A. ;
Abassebay, N. ;
Ohana, M. ;
Banaste, N. ;
Cadi, M. ;
Behr, J. ;
Boussel, L. ;
Fournier, L. ;
Zins, M. ;
Beregi, J. P. ;
Luciani, A. ;
Cotten, A. ;
Meder, J. F. .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2020, 101 (12) :783-788
[10]   Three artificial intelligence data challenges based on CT and ultrasound [J].
Lassau, Nathalie ;
Bousaid, Imad ;
Chouzenoux, Emilie ;
Verdon, Antoine ;
Balleyguier, Corinne ;
Bidault, Francois ;
Mousseaux, Elie ;
Harguem-Zayani, Sana ;
Gaillandre, Loic ;
Bensalah, Zoubir ;
Doutriaux-Dumoulin, Isabelle ;
Monroc, Michele ;
Haquin, Audrey ;
Ceugnart, Luc ;
Bachelle, Florence ;
Charlot, Mathilde ;
Thomassin-Naggara, Isabelle ;
Fourquet, Tiphaine ;
Dapvril, Heloise ;
Orabona, Joseph ;
Chamming's, Foucauld ;
El Haik, Mickael ;
Zhang-Yin, Jules ;
Guillot, Marc-Samir ;
Ohana, Mickael ;
Caramella, Thomas ;
Diascorn, Yann ;
Airaud, Jean-Yves ;
Cuingnet, Philippe ;
Gencer, Umit ;
Lawrance, Littisha ;
Luciani, Alain ;
Cotten, Anne ;
Meder, Jean-Francois .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2021, 102 (11) :669-674