Controlled crossover of electron transport in graphene nanoconstriction: From Coulomb blockade to electron interference

被引:1
作者
Yu, Wei [1 ,2 ]
Guo, Xiao [1 ,2 ]
Cai, Yuwen [1 ,2 ]
Yu, Xiaotian [1 ,2 ]
Liang, Wenjie [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Ctr Condensed Matter Phys, Beijing Key Lab Nanomat & Nanodevices, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100190, Peoples R China
关键词
graphene nanoconstriction; Coulomb blockade; electron interference; gate-tunable; JUNCTIONS;
D O I
10.1088/1674-1056/accf67
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The ability to control transport behaviors in nanostructure is crucial for usage as a fundamental research platform as well as a practical device. In this study, we report a gate-controlled crossover of electron transport behaviors using graphene nanoconstrictions as a platform. The observed transport properties span from Coulomb blockade-dominated single electron transmission to electron-wave interference-dominated quantum behavior. Such drastic modulation is achieved by utilizing a single back gate on a graphene nanoconstriction structure, where the size of nanostructure in the constriction and coupling strength of it to the electrodes can be tuned electrically. Our results indicate that electrostatic field by gate voltage upon the confined nanostructure defines both the size of the nanoconstriction as well as its interaction to electrodes. Increasing gate voltage raises Fermi level to cross the energy profile in the nanoconstriction, resulting in decreased energy barriers which affect the size of nanoconstriction and transmissivity of electrons. The gate-tunable nanoconstriction device can therefore become a potential platform to study quantum critical behaviors and enrich electronic and spintronic devices.
引用
收藏
页数:6
相关论文
共 39 条
[1]   Band-to-band tunneling in carbon nanotube field-effect transistors [J].
Appenzeller, J ;
Lin, YM ;
Knoch, J ;
Avouris, P .
PHYSICAL REVIEW LETTERS, 2004, 93 (19) :196805-1
[2]   Imaging coherent transport in graphene (part I): mapping universal conductance fluctuations [J].
Berezovsky, J. ;
Borunda, M. F. ;
Heller, E. J. ;
Westervelt, R. M. .
NANOTECHNOLOGY, 2010, 21 (27)
[3]   Characterizing wave functions in graphene nanodevices: Electronic transport through ultrashort graphene constrictions on a boron nitride substrate [J].
Bischoff, D. ;
Libisch, F. ;
Burgdoerfer, J. ;
Ihn, T. ;
Ensslin, K. .
PHYSICAL REVIEW B, 2014, 90 (11)
[4]   A Mechanically Tunable Quantum Dot in a Graphene Break Junction [J].
Caneva, Sabina ;
Hermans, Matthijs ;
Lee, Martin ;
Garcia-Fuente, Amador ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Dekker, Cees ;
Ferrer, Jaime ;
van der Zant, Herre S. J. ;
Gehring, Pascal .
NANO LETTERS, 2020, 20 (07) :4924-4931
[5]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[6]  
Fang JH, 2006, CHINESE PHYS, V15, P1071, DOI 10.1088/1009-1963/15/5/034
[7]   Quantum Interference in Graphene Nanoconstrictions [J].
Gehring, Pascal ;
Sadeghi, Hatef ;
Sangtarash, Sara ;
Lau, Chit Siong ;
Liu, Junjie ;
Ardavan, Arzhang ;
Warner, Jamie H. ;
Lambert, Colin J. ;
Briggs, G. Andrew. D. ;
Mol, Jan A. .
NANO LETTERS, 2016, 16 (07) :4210-4216
[8]   From the Kondo regime to the mixed-valence regime in a single-electron transistor [J].
Goldhaber-Gordon, D ;
Göres, J ;
Kastner, MA ;
Shtrikman, H ;
Mahalu, D ;
Meirav, U .
PHYSICAL REVIEW LETTERS, 1998, 81 (23) :5225-5228
[9]   Energy band-gap engineering of graphene nanoribbons [J].
Han, Melinda Y. ;
Oezyilmaz, Barbaros ;
Zhang, Yuanbo ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)
[10]   Mesoscopic conductance fluctuations in graphene [J].
Horsell, D. W. ;
Savchenko, A. K. ;
Tikhonenko, F. V. ;
Kechedzhi, K. ;
Lerner, I. V. ;
Fal'ko, V. I. .
SOLID STATE COMMUNICATIONS, 2009, 149 (27-28) :1041-1045