Stability Results for a Laminated Beam with Kelvin-Voigt Damping

被引:2
|
作者
Ramos, A. J. A. [1 ]
Freitas, M. M. [1 ]
Cabanillas, V. R. [2 ]
Dos Santos, M. J. [3 ]
Raposo, C. A. [4 ]
机构
[1] Fed Univ Para, Fac Math, Rua Raimundo Santana S-N, BR-68721000 Salinopolis, Para, Brazil
[2] Univ Lima, Programa Estudios Gen, Ave Javier Prado Este 4600, Lima 15023, Peru
[3] Fed Univ Para, Fac Exact Sci & Technol, Rua Manoel de Abreu S-N, BR-68440000 Abaetetuba, Para, Brazil
[4] Univ Fed Bahia, Math Dept, Av Milton Santos S-N, BR-40170110 Salvador, BA, Brazil
关键词
35Q60; 35Q93; 74F15; 35Q74; 93B52; EXPONENTIAL STABILITY; WELL-POSEDNESS; DECAY; STABILIZATION;
D O I
10.1007/s40840-023-01550-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we consider a laminated beam subjected to Kelvin-Voigt damping. Under the semigroup theory approach, applying the Lumer-Phillips Theorem, we establish the well-posedness of the associated initial value problem. This paper aims to prove exponential and polynomial stability results when the system is fully and partially damped. First, using the method developed by Z. Liu and S. Zheng, we show that the semigroup associated with the fully damped system is analytic and, consequently, exponentially stable. On the other hand, we prove the lack of exponential stability when the system is partially damped, and then, using the Borichev and Tomilov Theorem, we prove its polynomial stability.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Stability results of locally coupled wave equations with local Kelvin-Voigt damping: Cases when the supports of damping and coupling coefficients are disjoint
    Akil, Mohammad
    Badawi, Haidar
    Nicaise, Serge
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (06)
  • [42] EFFECT OF KELVIN-VOIGT DAMPING ON SPECTRUM ANALYSIS OF A WAVE EQUATION
    Lu, Liqing
    Zhao, Liyan
    Hu, Jing
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [43] Stability of a Timoshenko System with Localized Kelvin-Voigt Dissipation
    Aguilera Contreras, Gabriel
    Munoz Rivera, Jaime E.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (03) : 3547 - 3563
  • [44] ON A KELVIN-VOIGT VISCOELASTIC WAVE EQUATION WITH STRONG DELAY
    Demchenko, Hanna
    Anikushyn, Andrii
    Pokojovy, Michael
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (06) : 4382 - 4412
  • [45] EVENTUAL DIFFERENTIABILITY OF COUPLED WAVE EQUATIONS WITH LOCAL KELVIN-VOIGT DAMPING
    Bchatnia, Ahmed
    Souayeh, Nadia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (06): : 1317 - 1338
  • [46] Decay for the Kelvin-Voigt damped wave equation: Piecewise smooth damping
    Burq, Nicolas
    Sun, Chenmin
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (01): : 446 - 483
  • [47] Energy decay rate of the wave-wave transmission system with Kelvin-Voigt damping
    Zhang, Hua-Lei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (11) : 8721 - 8747
  • [48] BRESSE SYSTEMS WITH LOCALIZED KELVIN-VOIGT DISSIPATION
    Contreras, Gabriel Aguilera
    Munoz-Rivera, Jaime E.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021,
  • [49] Exponential stability result for the wave equation with Kelvin-Voigt damping and past history subject to Wentzell boundary condition and delay term
    Kechiche, Dounya
    Khemmoudj, Ammar
    Medjden, Mohammed
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (03) : 1546 - 1576
  • [50] Energy decay for a coupled wave system with one local Kelvin-Voigt damping
    Zhang, Hua-Lei
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (04) : 1310 - 1327