Stability Results for a Laminated Beam with Kelvin-Voigt Damping

被引:2
|
作者
Ramos, A. J. A. [1 ]
Freitas, M. M. [1 ]
Cabanillas, V. R. [2 ]
Dos Santos, M. J. [3 ]
Raposo, C. A. [4 ]
机构
[1] Fed Univ Para, Fac Math, Rua Raimundo Santana S-N, BR-68721000 Salinopolis, Para, Brazil
[2] Univ Lima, Programa Estudios Gen, Ave Javier Prado Este 4600, Lima 15023, Peru
[3] Fed Univ Para, Fac Exact Sci & Technol, Rua Manoel de Abreu S-N, BR-68440000 Abaetetuba, Para, Brazil
[4] Univ Fed Bahia, Math Dept, Av Milton Santos S-N, BR-40170110 Salvador, BA, Brazil
关键词
35Q60; 35Q93; 74F15; 35Q74; 93B52; EXPONENTIAL STABILITY; WELL-POSEDNESS; DECAY; STABILIZATION;
D O I
10.1007/s40840-023-01550-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we consider a laminated beam subjected to Kelvin-Voigt damping. Under the semigroup theory approach, applying the Lumer-Phillips Theorem, we establish the well-posedness of the associated initial value problem. This paper aims to prove exponential and polynomial stability results when the system is fully and partially damped. First, using the method developed by Z. Liu and S. Zheng, we show that the semigroup associated with the fully damped system is analytic and, consequently, exponentially stable. On the other hand, we prove the lack of exponential stability when the system is partially damped, and then, using the Borichev and Tomilov Theorem, we prove its polynomial stability.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Stability of the wave equation with localized Kelvin-Voigt damping and dynamic Wentzell boundary conditions with delay
    Dahmani, Abdelhakim
    Khemmoudj, Ammar
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (04) : 3649 - 3673
  • [32] Polynomial stability of one-dimensional wave equation with local degenerate Kelvin-Voigt damping and discontinuous coefficients
    Zhang, Hua-Lei
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2024, 104 (03):
  • [33] A Numerical Method of the Euler-Bernoulli Beam with Optimal Local Kelvin-Voigt Damping
    Yu, Xin
    Ren, Zhigang
    Zhang, Qian
    Xu, Chao
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [34] Asymptotic behavior of the Rao-Nakra sandwich beam model with Kelvin-Voigt damping
    Quispe Mendez, Teofanes
    Cabanillas Zannini, Victor
    Feng, Baowei
    MATHEMATICS AND MECHANICS OF SOLIDS, 2024, 29 (01) : 22 - 38
  • [35] ENERGY DECAY RATE OF THE GENERALIZED RAO-NAKRA BEAM WITH SINGULAR LOCAL KELVIN-VOIGT DAMPING
    Ali, Zeinab mohamad
    Wehbe, Ali
    Guesmia, Aissa
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2024, 13 (06): : 1548 - 1583
  • [36] Polynomial stability for a Timoshenko-type system of thermoelasticity with partial Kelvin-Voigt damping
    Cui, Jianan
    Chai, Shugen
    Cao, Xiaomin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 520 (02)
  • [37] Local uniform stability for the semilinear wave equation in inhomogeneous media with locally distributed Kelvin-Voigt damping
    Astudillo, M.
    Cavalcanti, M. M.
    Fukuoka, R.
    Gonzalez Martinez, V. H.
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (14-15) : 2145 - 2159
  • [38] TRANSMISSION PROBLEMS IN (THERMO)VISCOELASTICITY WITH KELVIN-VOIGT DAMPING: NONEXPONENTIAL, STRONG, AND POLYNOMIAL STABILITY
    Munoz Rivera, Jaime E.
    Racke, Reinhard
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (05) : 3741 - 3765
  • [39] Exponential decay of energy of the Euler-Bernoulli beam with locally distributed Kelvin-Voigt damping
    Liu, KS
    Liu, ZG
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (03) : 1086 - 1098