Lower bounds for eigenvalues of Laplacian operator and the clamped plate problem

被引:0
作者
Ji, Zhengchao [1 ]
Xu, Hongwei [1 ]
机构
[1] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
35P15; 58G05; UNIVERSAL BOUNDS; CONJECTURE; DOMAINS; POLYA;
D O I
10.1007/s00526-023-02506-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first investigate the lower bound for higher eigenvalues ?(i) of the Laplace operator on a bounded domain and obtain a sharp lower bound. Then, we extent this estimate of the eigenvalues to general cases. Finally, we study the eigenvalues G(i) for the clamped plate problem and deliver a sharp bound for the clamped plate problem for arbitrary dimension.
引用
收藏
页数:27
相关论文
共 23 条
  • [11] Eigenvalue inequalities for the clamped plate problem of Lν2 operator
    Zeng, Lingzhong
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (04) : 793 - 812
  • [12] ESTIMATES OF EIGENVALUES OF A CLAMPED PROBLEM
    Zheng, Tao
    KODAI MATHEMATICAL JOURNAL, 2015, 38 (02) : 249 - 269
  • [13] Isoperimetric inequalities for eigenvalues of the Laplacian and the Schrodinger operator
    Benguria, Rafael D.
    Linde, Helmut
    Loewe, Benjamin
    BULLETIN OF MATHEMATICAL SCIENCES, 2012, 2 (01) : 1 - 56
  • [14] Eigenvalues upper bounds for the magnetic Schrodinger operator
    Colbois, Bruno
    El Soufi, Ahmad
    Ilias, Said
    Savo, Alessandro
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2022, 30 (04) : 779 - 814
  • [15] Estimates for eigenvalues of the bi-drifting Laplacian operator
    Du, Feng
    Wu, Chuanxi
    Li, Guanghan
    Xia, Changyu
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (03): : 703 - 726
  • [16] Universal bounds for eigenvalues of the biharmonic operator on Riemannian manifolds
    Wang, Qiaoling
    Xia, Changyu
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 245 (01) : 334 - 352
  • [17] Universal bounds for eigenvalues of Schrodinger operator on Riemannian manifolds
    Wang, Qiaoling
    Xia, Changyu
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2008, 33 (02) : 319 - 336
  • [18] On a conjecture of Ashbaugh and Benguria about lower eigenvalues of the Neumann laplacian
    Xia, Changyu
    Wang, Qiaoling
    MATHEMATISCHE ANNALEN, 2023, 385 (1-2) : 863 - 879
  • [19] A SHARP LOWER BOUND FOR SOME NEUMANN EIGENVALUES OF THE HERMITE OPERATOR
    Brandolini, B.
    Chiacchio, F.
    Trombetti, C.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2013, 26 (5-6) : 639 - 654
  • [20] A lower bound for the first eigenvalue in the Laplacian operator on compact Riemannian manifolds
    He, Yue
    JOURNAL OF GEOMETRY AND PHYSICS, 2013, 71 : 73 - 84