A smoothing Newton method based on the modulus equation for a class of weakly nonlinear complementarity problems

被引:2
作者
Huang, Baohua [1 ]
Li, Wen [2 ]
机构
[1] Fujian Normal Univ, Sch Math & Stat, Fuzhou 350117, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear complementarity problem; Modulus-based; Smoothing Newton method; Global convergence; SPLITTING ITERATION METHODS; VARIATIONAL INEQUALITY; ALGORITHMS; CONVERGENCE;
D O I
10.1007/s10589-023-00482-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
By equivalently transforming a class of weakly nonlinear complementarity problems into a modulus equation, and introducing a smoothing approximation of the absolute value function, a smoothing Newton method is established for solving the weakly nonlinear complementarity problem. Under some mild assumptions, the proposed method is shown to possess global convergence and locally quadratical convergence. Especially, the global convergence results do not need a priori existence of an accumulation point with some suitable conditions. Numerical results are given to show the efficiency of the proposed method.
引用
收藏
页码:345 / 381
页数:37
相关论文
共 47 条
[1]   Modulus-based matrix splitting iteration methods for linear complementarity problems [J].
Bai, Zhong-Zhi .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2010, 17 (06) :917-933
[2]  
BERMAN A., 1979, Nonnegative Matrices in the Mathematical Sciences
[3]   A NON-INTERIOR-POINT CONTINUATION METHOD FOR LINEAR COMPLEMENTARITY-PROBLEMS [J].
CHEN, BT ;
HARKER, PT .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (04) :1168-1190
[4]   A new class of penalized NCP-functions and its properties [J].
Chen, J. -S. ;
Huang, Z. -H. ;
She, C. -Y. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 50 (01) :49-73
[5]   A smoothing Newton method based on the generalized Fischer-Burmeister function for MCPs [J].
Chen, Jein-Shan ;
Pan, Shaohua ;
Lin, Tzu-Ching .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (9-10) :3739-3758
[6]   Robust solution of monotone stochastic linear complementarity problems [J].
Chen, Xiaojun ;
Zhang, Chao ;
Fukushima, Masao .
MATHEMATICAL PROGRAMMING, 2009, 117 (1-2) :51-80
[7]   On smoothing methods for the P0 matrix linear complementarity problem [J].
Chen, XJ ;
Ye, YY .
SIAM JOURNAL ON OPTIMIZATION, 2000, 11 (02) :341-363
[8]  
Clarke F. H., 1990, Optimization and nonsmooth analysis
[9]   A modified modulus method for symmetric positive-definite linear complementarity problems [J].
Dong, Jun-Liang ;
Jiang, Mei-Qun .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2009, 16 (02) :129-143
[10]   A new merit function for nonlinear complementarity problems and a related algorithm [J].
Facchinei, F ;
Soares, J .
SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (01) :225-247