Dissolution of Calcium Silicates in Molten CaCl2

被引:4
作者
Cheng, Xiaotian [1 ,2 ]
Yang, Xiao [2 ]
机构
[1] Zhejiang Univ, Hangzhou 310027, Zhejiang, Peoples R China
[2] Westlake Univ, Sch Engn, Key Lab Coastal Environm & Resources Zhejiang Pro, 18 Shilongshan Rd, Hangzhou 310024, Zhejiang, Peoples R China
来源
METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE | 2023年 / 54卷 / 01期
关键词
ELECTROCHEMICAL REDUCTION; SILICON ELECTRODEPOSITION; SALT; SI; NANOWIRES;
D O I
10.1007/s11663-022-02679-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electrodeposition of silicon in molten CaCl2 has been drawing increasing attention. Soluble silicate anions in the melt can be reduced and tailored into functional materials. To ensure a precise control of the electrochemical processes, a comprehensive knowledge on the soluble silicate anions in the melt is indispensable. Here, we clarify the formation behavior of soluble silicate anions by dissolving solid CaSiO3 and Ca2SiO4 in molten CaCl2 at temperatures from 1047 K to 1233 K (774 degrees C to 960 degrees C). It is found that Ca2SiO4 dissolves more and faster. The formation of Ca2SiO3Cl2 or Ca3SiO4Cl2 as an intermediate product is observed. Metasilicate (SiO32-) and orthosilicate (SiO44-) are detected as soluble anions in the melt when dissolving CaSiO3 and Ca2SiO4, respectively. Mass transfer of these ions plays an important role in determining the overall dissolution rate. The polymeric chain-like structure of SiO32- is the reason for the slower dissolution of CaSiO3 compared with that of Ca2SiO4, which dissolves as SiO44- with a completely isolated tetrahedral structure in the melt. Phase relationships in the CaCl2-CaSiO3 and CaCl2-Ca2SiO4 binary systems at the CaCl2-rich side are clarified. These results should be useful for manipulating the electrochemical reactions of Si (IV) anions on purposes.
引用
收藏
页码:192 / 202
页数:11
相关论文
共 29 条
[1]   THE ELECTRODEPOSITION OF SILICON IN FLUORIDE MELTS [J].
BOEN, R ;
BOUTEILLON, J .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1983, 13 (03) :277-288
[2]   SILICON EPITAXIAL-GROWTH BY ELECTRODEPOSITION FROM MOLTEN FLUORIDES [J].
COHEN, U ;
HUGGINS, RA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1976, 123 (03) :381-383
[3]   SOME PROSPECTIVE APPLICATIONS OF SILICON ELECTRODEPOSITION FROM MOLTEN FLUORIDES TO SOLAR-CELL FABRICATION [J].
COHEN, U .
JOURNAL OF ELECTRONIC MATERIALS, 1977, 6 (06) :607-643
[4]   Low-Temperature Molten-Salt Production of Silicon Nanowires by the Electrochemical Reduction of CaSiO3 [J].
Dong, Yifan ;
Slade, Tyler ;
Stolt, Matthew J. ;
Li, Linsen ;
Girard, Steven N. ;
Mai, Liqiang ;
Jin, Song .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (46) :14453-14457
[5]   MECHANISM OF ELECTRODEPOSITION OF SILICON FROM K2SIF6-FLINAK [J].
ELWELL, D ;
RAO, GM .
ELECTROCHIMICA ACTA, 1982, 27 (06) :673-676
[6]  
International Energy Agency, 2022, SNAPSH GLOB PV MARK
[7]   Direct Carbothermic Silica Reduction from Purified Silica to Solar-Grade Silicon [J].
Itaka, Kenji ;
Ogasawara, Takuya ;
Boucetta, Abderahmane ;
Benioub, Rabie ;
Sumiya, Masatomo ;
Hashimoto, Takuya ;
Koinuma, Hideomi ;
Furuya, Yasubumi .
TUNISIA-JAPAN SYMPOSIUM: R&D OF ENERGY AND MATERIAL SCIENCES FOR SUSTAINABLE SOCIETY, 2015, 596
[8]   The solubility of MgO in molten MgCl2-CaCl2 salt [J].
Ito, M ;
Morita, K .
MATERIALS TRANSACTIONS, 2004, 45 (08) :2712-2718
[9]   CORROSION IN MOLTEN-SALTS - ANNOTATED-BIBLIOGRAPHY [J].
JANZ, GJ ;
TOMKINS, RPT .
CORROSION, 1979, 35 (11) :485-504
[10]   Silicon Electrochemistry in Molten Salts [J].
Juzeliunas, Eimutis ;
Fray, Derek J. .
CHEMICAL REVIEWS, 2020, 120 (03) :1690-1709