Bertrand's Postulate for Carmichael Numbers

被引:0
作者
Larsen, Daniel [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
GAPS;
D O I
10.1093/imrn/rnac203
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Alford et al. [1] proved that there are infinitely many Carmichael numbers. In the same paper, they ask if a statement analogous to Bertrand's postulate could be proven for Carmichael numbers. In this paper, we answer this question, proving the stronger statement that for all delta > 0 and x sufficiently large in terms of delta, there exist at least e(log x/(log log x)2+delta) Carmichael numbers between x and x + x/(log x)(1/2+delta).
引用
收藏
页码:13072 / 13098
页数:27
相关论文
共 11 条
[1]   THERE ARE INFINITELY MANY CARMICHAEL NUMBERS [J].
ALFORD, WR ;
GRANVILLE, A ;
POMERANCE, C .
ANNALS OF MATHEMATICS, 1994, 139 (03) :703-722
[2]  
Chernick J., 1939, B AM MATH SOC, V45, P269, DOI 10.1090/S0002-9904-1939- 06953- X
[3]  
Erdos P., 1935, Quart. J. Math. (Oxford Ser.), V6, P205, DOI DOI 10.1093/QMATH/OS-6.1.205
[4]   Watt's mean value theorem and Carmichael numbers [J].
Harman, Glyn .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (02) :241-248
[5]  
Korselt AR., 1899, LIntermdiaire des Mathmaticiens, V6, P142
[6]   Primality testing with Gaussian periods [J].
Lenstra, H. W., Jr. ;
Pomerance, Carl .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2019, 21 (04) :1229-1269
[7]   Dense clusters of primes in subsets [J].
Maynard, James .
COMPOSITIO MATHEMATICA, 2016, 152 (07) :1517-1554
[8]   Small gaps between primes [J].
Maynard, James .
ANNALS OF MATHEMATICS, 2015, 181 (01) :383-413
[9]  
Simerka V., 1885, Casopis pro p estov an i matematiky a fysiky, V14, P221
[10]   FACTORS OF CARMICHAEL NUMBERS AND AN EVEN WEAKER k-TUPLES CONJECTURE [J].
Wright, Thomas .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 99 (03) :376-384