Convolutional neural network and 2D logistic-adjusted-Chebyshev-based zero-watermarking of color images

被引:0
作者
Darwish, Mohamed M. [1 ]
Farhat, Amal A. [1 ]
El-Gindy, T. M. [2 ]
机构
[1] Assiut Univ, Dept Comp Sci, Fac Comp & Informat, Assiut, Egypt
[2] Assiut Univ, Fac Sci, Dept Math, Assiut, Egypt
关键词
Zero-Watermarking; Convolutional Neural Network; Chebyshev map;
D O I
10.1007/s11042-023-16649-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Robust zero-watermarking is a protection of copyright approach that is both effective and distortion-free, and it has grown into a core of research on the subject of digital watermarking. This paper proposes a revolutionary zero-watermarking approach for color images using convolutional neural networks (CNN) and a 2D logistic-adjusted Chebyshev map (2D-LACM). In this algorithm, we first extracted deep feature maps from an original color image using the pre-trained VGG19. These feature maps were then fused into a featured image, and the owner's watermark sequence was incorporated using an XOR operation. Finally, 2D-LACM encrypts the copyright watermark and scrambles the binary feature matrix to ensure security. The experimental results show that the proposed algorithm performs well in terms of imperceptibility and robustness. The BER values of the extracted watermarks were below 0.0044 and the NCC values were above 0.9929, while the average PSNR values of the attacked images were 33.1537 dB. Also, it is superior to other algorithms in terms of robustness to conventional image processing and geometric attacks.
引用
收藏
页码:29969 / 29995
页数:27
相关论文
共 28 条
[1]  
[Anonymous], 2023, Worldometer
[2]   Sampling the host response to SARS-CoV-2 in hospitals under siege [J].
Charney, Alexander W. ;
Simons, Nicole W. ;
Mouskas, Konstantinos ;
Lepow, Lauren ;
Cheng, Esther ;
Le Berichel, Jessica ;
Chang, Christie ;
Marvin, Robert ;
Del Valle, Diane Marie ;
Calorossi, Sharlene ;
Lansky, Alona ;
Walker, Laura ;
Patel, Manishkumar ;
Xie, Hui ;
Yi, Nancy ;
Yu, Alex ;
Kang, Gurpawan ;
Liharska, Lora E. ;
Moya, Emily ;
Hartnett, Matthew ;
Hatem, Sandra ;
Wilkins, Lillian ;
Eaton, Melody ;
Jamal, Hajra ;
Tuballes, Kevin ;
Chen, Steven T. ;
Chung, Jonathan ;
Harris, Jocelyn ;
Batchelor, Craig ;
Lacunza, Jose ;
Yishak, Mahlet ;
Argueta, Kimberly ;
Karekar, Neha ;
Lee, Brian ;
Kelly, Geoffrey ;
Geanon, Daniel ;
Handler, Diana ;
Leech, John ;
Stefanos, Hiyab ;
Dawson, Travis ;
Scott, Ieisha ;
Francoeur, Nancy ;
Johnson, Jessica S. ;
Vaid, Akhil ;
Glicksberg, Benjamin S. ;
Nadkarni, Girish N. ;
Schadt, Eric E. ;
Gelb, Bruce D. ;
Rahman, Adeeb ;
Sebra, Robert .
NATURE MEDICINE, 2020, 26 (08) :1157-1158
[3]  
Chen F., 2018, arXiv
[4]   CT Imaging Features of 2019 Novel Coronavirus (2019-nCoV) [J].
Chung, Michael ;
Bernheim, Adam ;
Mei, Xueyan ;
Zhang, Ning ;
Huang, Mingqian ;
Zeng, Xianjun ;
Cui, Jiufa ;
Xu, Wenjian ;
Yang, Yang ;
Fayad, Zahi A. ;
Jacobi, Adam ;
Li, Kunwei ;
Li, Shaolin ;
Shan, Hong .
RADIOLOGY, 2020, 295 (01) :202-207
[5]   COVID-19 and Cardiovascular Disease [J].
Clerkin, Kevin J. ;
Fried, Justin A. ;
Raikhelkar, Jayant ;
Sayer, Gabriel ;
Griffin, Jan M. ;
Masoumi, Amirali ;
Jain, Sneha S. ;
Burkhoff, Daniel ;
Kumaraiah, Deepa ;
Rabbani, LeRoy ;
Schwartz, Allan ;
Uriel, Nir .
CIRCULATION, 2020, 141 (20) :1648-1655
[6]   Federated Learning for Smart Healthcare: A Survey [J].
Dinh C Nguyen ;
Quoc-Viet Pham ;
Pathirana, Pubudu N. ;
Ding, Ming ;
Seneviratne, Aruna ;
Lin, Zihuai ;
Dobre, Octavia ;
Hwang, Won-Joo .
ACM COMPUTING SURVEYS, 2023, 55 (03)
[7]  
Dinh CT, 2020, ADV NEUR IN, V33
[8]  
Fallah A, 2020, ADV NEUR IN, V33
[9]   Federated learning for COVID-19 screening from Chest X-ray images [J].
Feki, Ines ;
Ammar, Sourour ;
Kessentini, Yousri ;
Muhammad, Khan .
APPLIED SOFT COMPUTING, 2021, 106 (106)
[10]  
Finn C, 2017, PR MACH LEARN RES, V70