Supramolecular phthalocyanine assemblies-enhanced synergistic photodynamic and photothermal therapy guided by photoacoustic imaging

被引:0
作者
Zhao, Yuan-Yuan [1 ,2 ]
Zhang, Xiaojun [1 ]
Chen, Zixuan [1 ]
Xu, Yihui [1 ]
Kim, Heejeong [2 ]
Jeong, Hyunsun [2 ]
Lee, You Rim [2 ]
Lee, Jiah [2 ]
Li, Xingshu [1 ,3 ]
Yoon, Juyoung [2 ,4 ]
机构
[1] Fuzhou Univ, Coll Chem, Fujian Prov Key Lab Canc Metastasis Chemoprevent &, Fuzhou, Peoples R China
[2] Ewha Womans Univ, Dept Chem & Nanosci, Seoul, South Korea
[3] Fuzhou Univ, Coll Chem, Fujian Prov Key Lab Canc Metastasis Chemoprevent &, Fuzhou 350108, Peoples R China
[4] Ewha Womans Univ, Dept Chem & Nanosci, Seoul 03760, South Korea
来源
AGGREGATE | 2024年 / 5卷 / 03期
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Forster resonance energy transfer; photoacoustic imaging; photodynamic therapy; photothermal therapy; supramolecular assembly; CANCER; PHOTOSENSITIZER; BILAYERS; BODIPY; PH;
D O I
10.1002/agt2.514
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Phototherapeutic nanoplatforms that combine photodynamic therapy (PDT) and photothermal therapy (PTT) with the guidance of photoacoustic (PA) imaging are an effective strategy for the treatment of tumors, but establishing a universal method for this strategy has been challenging. In this study, we present a supramolecular assembly strategy based on Forster resonance energy transfer to construct a supramolecular nanostructured phototherapeutic agent (PcDA) via the anion and cation supramolecular interaction between two water-soluble phthalocyanine ramifications, PcD and PcA. This approach promotes the absorption of energy, thus enhancing the generation of reactive oxygen species (ROS) and heat by PcDA, improving its therapeutic efficacy, and overcoming the low photon utilization efficiency of conventional PSs. Notably, after the intravenous injection of PcDA, neoplastic sites could be clearly visualized using PA imaging, with a PA signal-to-liver ratio as high as 11.9. Due to these unique features, PcDA exhibits excellent antitumor efficacy in a preclinical model at a low dose of light irradiation. This study thus offers a general approach for the development of efficient phototherapeutic agents based on the simultaneous effect of PDT and PTT against tumors with the assistance of PA imaging. A nanostructured supramolecular phototherapeutic agent (PcDA) was developed based on the Forster resonance energy transfer mechanism. PcDA can enable the visualization of a tumor with a photoacoustic signal-to-liver ratio as high as 11.9, and 95% of tumor growth is suppressed through photodynamic and photothermal synergistic therapy at a PcDA dose of 0.8 nmol g-1 and a light dose of 300 J cm-2. image
引用
收藏
页数:10
相关论文
共 55 条
[1]   Toward understanding and exploiting tumor heterogeneity [J].
Alizadeh, Ash A. ;
Aranda, Victoria ;
Bardelli, Alberto ;
Blanpain, Cedric ;
Bock, Christoph ;
Borowski, Christine ;
Caldas, Carlos ;
Califano, Andrea ;
Doherty, Michael ;
Elsner, Markus ;
Esteller, Manel ;
Fitzgerald, Rebecca ;
Korbel, Jan O. ;
Lichter, Peter ;
Mason, Christopher E. ;
Navin, Nicholas ;
Pe'er, Dana ;
Polyak, Kornelia ;
Roberts, Charles W. M. ;
Siu, Lillian ;
Snyder, Alexandra ;
Stower, Hannah ;
Swanton, Charles ;
Verhaak, Roel G. W. ;
Zenklusen, Jean C. ;
Zuber, Johannes ;
Zucman-Rossi, Jessica .
NATURE MEDICINE, 2015, 21 (08) :846-853
[2]   Tissue pO2 distributions in xenograft tumors dynamically imaged by Cherenkov-excited phosphorescence during fractionated radiation therapy [J].
Cao, Xu ;
Allu, Srinivasa Rao ;
Jiang, Shudong ;
Jia, Mengyu ;
Gunn, Jason R. ;
Yao, Cuiping ;
LaRochelle, Ethan P. ;
Shell, Jennifer R. ;
Bruza, Petr ;
Gladstone, David J. ;
Jarvis, Lesley A. ;
Tian, Jie ;
Vinogradov, Sergei A. ;
Pogue, Brian W. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[3]   Photodynamic therapy and anti-tumour immunity [J].
Castano, Ana P. ;
Mroz, Pawel ;
Hamblin, Michael R. .
NATURE REVIEWS CANCER, 2006, 6 (07) :535-545
[4]   Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization [J].
Celli, Jonathan P. ;
Spring, Bryan Q. ;
Rizvi, Imran ;
Evans, Conor L. ;
Samkoe, Kimberley S. ;
Verma, Sarika ;
Pogue, Brian W. ;
Hasan, Tayyaba .
CHEMICAL REVIEWS, 2010, 110 (05) :2795-2838
[5]   BODIPY as a Multifunctional Theranostic Reagent in Biomedicine: Self-Assembly, Properties, and Applications [J].
Cheng, Hong-Bo ;
Cao, Xiaoqiao ;
Zhang, Shuchun ;
Zhang, Keyue ;
Cheng, Yang ;
Wang, Jiaqi ;
Zhao, Jing ;
Zhou, Liming ;
Liang, Xing-Jie ;
Yoon, Juyoung .
ADVANCED MATERIALS, 2023, 35 (18)
[6]   Visualization of supramolecular assembly by aggregation-induced emission [J].
Guo, Wu-Jie ;
Peng, Tuokai ;
Zhu, Wenping ;
Ma, Shixiang ;
Wang, Guang ;
Li, Ying ;
Liu, Bin ;
Peng, Hui-Qing .
AGGREGATE, 2023, 4 (02)
[7]   D-type neuropeptide decorated AIEgen/RENP hybrid nanoprobes with light-driven ROS generation ability for NIR-II fluorescence imaging-guided through-skull photodynamic therapy of gliomas [J].
He, Xuelu ;
Luo, Yuan ;
Li, Yanying ;
Pan, Yuanbo ;
Kwok, Ryan T. K. ;
He, Lulu ;
Duan, Xiaolin ;
Zhang, Pengfei ;
Wu, Aiguo ;
Tang, Ben Zhong ;
Li, Juan .
AGGREGATE, 2024, 5 (01)
[8]   Interstitial pH and pO(2) gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation [J].
Helmlinger, G ;
Yuan, F ;
Dellian, M ;
Jain, RK .
NATURE MEDICINE, 1997, 3 (02) :177-182
[9]  
Hu H., 2022, Angew. Chem., V61
[10]   Cell Membrane-Inspired Polymeric Vesicles for Combined Photothermal and Photodynamic Prostate Cancer Therapy [J].
Hu, Jiajia ;
Luo, Huanhuan ;
Qu, Qian ;
Liao, Xiaofeng ;
Huang, Chenglong ;
Chen, Jiayi ;
Cai, Zhenhai ;
Bao, Yi ;
Chen, Gang ;
Li, Biao ;
Cui, Wenguo .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (38) :42511-42520