Representation of live-fire energetic residues from insensitive mortar munitions using command-detonation testing

被引:1
作者
Beal, Samuel A. [1 ]
Bigl, Matthew F. [1 ]
Ramsey, Charles A. [2 ]
Kadoya, Warren M. [1 ]
Gelvin, Art [3 ]
Liddle Broberg, Kate [3 ]
机构
[1] US Army Engineer Res & Dev Ctr, Cold Reg Res & Engn Lab, 72 Lyme Rd, Hanover, NH 03755 USA
[2] EnviroStat Inc, Vail, AZ USA
[3] US Army Engineer Res & Dev Ctr, Cold Reg Res & Engn Lab, Alaska Res Off, Ft Wainwright, Fairbanks, AK USA
关键词
explosive residues; impact areas; insensitive munitions; munitions constituents; range sustainment; HIGH-ORDER DETONATIONS; ENVIRONMENTAL ASSESSMENT; RDX;
D O I
10.1002/prep.202300161
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Command (i. e., static) detonation is critical for testing munitions early in the acquisition process, however its representation of energetic residues produced during live fire has not yet been assessed. Here we measured energetic residue deposition rates on snow from live fire of 60 mm and 81 mm IMX-104 mortar munitions and then compared results with previous command-detonation tests of the same munitions. Mean live-fire deposition rates of IMX-104 compounds were: 3800 mg NTO, 34 mg DNAN, 12 mg RDX, and 1.9 mg HMX per 60 mm cartridge (n=9); and 8000 mg NTO, 60 mg DNAN, 20 mg RDX, and 2 mg HMX per 81 mm cartridge (n=13). The predominant residue compound NTO was accurately estimated by command detonation for the 60 mm munition (p=0.92) but was significantly underestimated for the 81 mm munition (p<0.0001). The minor residues of DNAN and RDX were relatively well estimated by command detonation for the 81 mm munition (p=0.07 and p=0.014, respectively), but both were significantly underestimated (p<0.0001) for the 60 mm munition. Despite some of these differences, the ability demonstrated here for command detonation to predict live-fire residue deposition rates to the correct order-of-magnitude supports its utility in assessing environmental impact.
引用
收藏
页数:11
相关论文
共 38 条
[1]   Post-blast explosive residue - a review of formation and dispersion theories and experimental research [J].
Abdul-Karim, N. ;
Blackman, C. S. ;
Gill, P. P. ;
Wingstedt, E. M. M. ;
Reif, B. A. P. .
RSC ADVANCES, 2014, 4 (97) :54354-54371
[2]   Aerostat-based sampling of emissions from open burning and open detonation of military ordnance [J].
Aurell, Johanna ;
Gullett, Brian K. ;
Tabor, Dennis ;
Williams, Ryan K. ;
Mitchell, William ;
Kemme, Michael R. .
JOURNAL OF HAZARDOUS MATERIALS, 2015, 284 :108-120
[3]   Detonation synthesis of carbon nano-onions via liquid carbon condensation [J].
Bagge-Hansen, M. ;
Bastea, S. ;
Hammons, J. A. ;
Nielsen, M. H. ;
Lauderbach, L. M. ;
Hodgin, R. L. ;
Pagoria, P. ;
May, C. ;
Aloni, S. ;
Jones, A. ;
Shaw, W. L. ;
Bukovsky, E., V ;
Sinclair, N. ;
Gustavsen, R. L. ;
Watkins, E. B. ;
Jensen, B. J. ;
Dattelbaum, D. M. ;
Firestone, M. A. ;
Huber, R. C. ;
Ringstrand, B. S. ;
Lee, J. R., I ;
van Buuren, T. ;
Fried, L. E. ;
Willey, T. M. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[4]  
Beal S.A., 2022, TR2213 ERDCCRREL, DOI [10.21079/11681/45266, DOI 10.21079/11681/45266]
[5]  
Beal S.A., 2023, TR232 ERDCCRREL, DOI [10.21079/11681/46913, DOI 10.21079/11681/46913]
[6]  
Brown R.C., CP1159 SERDP
[7]  
EPA Integrated Risk Information System (IRIS), 2018, HEX 1 3 5 TRIN 1 3 5
[8]   Environmental Assessment of Ammunition: the Importance of a Life-Cycle Approach [J].
Ferreira, Carlos ;
Ribeiro, Jose ;
Almada, Sara ;
Freire, Fausto .
PROPELLANTS EXPLOSIVES PYROTECHNICS, 2017, 42 (01) :44-53
[9]  
Fried L., 1994, URCLID117240 LAWR LI, DOI DOI 10.2172/95184
[10]   Submicrosecond Aggregation during Detonation Synthesis of Nanodiamond [J].
Hammons, Joshua A. ;
Nielsen, Michael H. ;
Bagge-Hansen, Michael ;
Bastea, Sorin ;
May, Chadd ;
Shaw, William L. ;
Martin, Aiden ;
Li, Yuelin ;
Sinclair, Nicholas ;
Lauderbach, Lisa M. ;
Hodgin, Ralph L. ;
Orlikowski, Daniel A. ;
Fried, Laurence E. ;
Willey, Trevor M. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (22) :5286-5293