Predictions of Additive Manufacturing Process Parameters and Molten Pool Dimensions with a Physics-Informed Deep Learning Model

被引:25
|
作者
Zhao, Mingzhi [1 ]
Wei, Huiliang [1 ]
Mao, Yiming [1 ]
Zhang, Changdong [1 ]
Liu, Tingting [1 ]
Liao, Wenhe [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mech Engn, Nanjing 210094, Peoples R China
来源
ENGINEERING | 2023年 / 23卷
关键词
Additive manufacturing; Molten pool; Model; Deep learning; Learnability; POWDER BED FUSION; NEURAL-NETWORKS; DIGITAL TWIN; FLUID-FLOW; MULTISCALE; HEAT; MICROSTRUCTURE; OPTIMIZATION; ALGORITHM; ALSI10MG;
D O I
10.1016/j.eng.2022.09.015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Molten pool characteristics have a significant effect on printing quality in laser powder bed fusion (PBF), and quantitative predictions of printing parameters and molten pool dimensions are critical to the intelligent control of the complex processes in PBF. Thus far, bidirectional predictions of printing parameters and molten pool dimensions have been challenging due to the highly nonlinear correlations involved. To address this issue, we integrate an experiment on molten pool characteristics, a mechanistic model, and deep learning to achieve both forward and inverse predictions of key parameters and molten pool characteristics during laser PBF. The experiment provides fundamental data, the mechanistic model significantly augments the dataset, and the multilayer perceptron (MLP) deep learning model predicts the molten pool dimensions and process parameters based on the dataset built from the experiment and the mechanistic model. The results show that bidirectional predictions of the molten pool dimensions and process parameters can be realized, with the highest prediction accuracies approaching 99.9% and mean prediction accuracies of over 90.0%. Moreover, the prediction accuracy of the MLP model is closely related to the characteristics of the dataset-that is, the learnability of the dataset has a crucial impact on the prediction accuracy. The highest prediction accuracy is 97.3% with enhancement of the dataset via the mechanistic model, while the highest prediction accuracy is 68.3% when using only the experimental dataset. The prediction accuracy of the MLP model largely depends on the quality of the dataset as well. The research results demonstrate that bidirectional predictions of complex correlations using MLP are feasible for laser PBF, and offer a novel and useful framework for the determination of process conditions and outcomes for intelligent additive manufacturing.& COPY; 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:181 / 195
页数:15
相关论文
共 50 条
  • [1] Physics-Informed Machine Learning for metal additive manufacturing
    Farrag, Abdelrahman
    Yang, Yuxin
    Cao, Nieqing
    Won, Daehan
    Jin, Yu
    PROGRESS IN ADDITIVE MANUFACTURING, 2025, 10 (01) : 171 - 185
  • [2] Physics-Informed Machine Learning for Accurate Prediction of Temperature and Melt Pool Dimension in Metal Additive Manufacturing
    Jiang, Feilong
    Xia, Min
    Hu, Yaowu
    3D PRINTING AND ADDITIVE MANUFACTURING, 2024, 11 (04) : e1679 - e1689
  • [3] A review on physics-informed machine learning for process-structure-property modeling in additive manufacturing
    Faegh, Meysam
    Ghungrad, Suyog
    Oliveira, Joao Pedro
    Rao, Prahalada
    Haghighi, Azadeh
    JOURNAL OF MANUFACTURING PROCESSES, 2025, 133 : 524 - 555
  • [4] Physics-informed deep learning cascade loss model
    Feng, Yunyang
    Song, Xizhen
    Yuan, Wei
    Lu, Hanan
    AEROSPACE SCIENCE AND TECHNOLOGY, 2023, 134
  • [5] Physics-informed machine learning and mechanistic modeling of additive manufacturing to reduce defects
    Du, Y.
    Mukherjee, T.
    DebRoy, T.
    APPLIED MATERIALS TODAY, 2021, 24
  • [6] Optimizing System Reliability in Additive Manufacturing Using Physics-Informed Machine Learning
    Wenzel, Soren
    Slomski-Vetter, Elena
    Melz, Tobias
    MACHINES, 2022, 10 (07)
  • [7] A physics-informed machine learning model for porosity analysis in laser powder bed fusion additive manufacturing
    Liu, Rui
    Liu, Sen
    Zhang, Xiaoli
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 113 (7-8): : 1943 - 1958
  • [8] A physics-informed machine learning model for porosity analysis in laser powder bed fusion additive manufacturing
    Rui Liu
    Sen Liu
    Xiaoli Zhang
    The International Journal of Advanced Manufacturing Technology, 2021, 113 : 1943 - 1958
  • [9] SenseNet: A Physics-Informed Deep Learning Model for Shape Sensing
    Qiu, Yitao
    Arunachala, Prajwal Kammardi
    Linder, Christian
    JOURNAL OF ENGINEERING MECHANICS, 2023, 149 (03)
  • [10] PIGNet: a physics-informed deep learning model toward generalized drug-target interaction predictions
    Moon, Seokhyun
    Zhung, Wonho
    Yang, Soojung
    Lim, Jaechang
    Kim, Woo Youn
    CHEMICAL SCIENCE, 2022, 13 (13) : 3661 - 3673