Pore-scale modeling of gravity-driven superheated vapor flooding process in porous media using the lattice Boltzmann method

被引:2
|
作者
Diao, Zhenhan [1 ]
Chen, Zixing [1 ]
Liu, Haihu [1 ,2 ]
Wei, Bei [3 ,4 ]
Hou, Jian [3 ,4 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, 28 West Xianning Rd, Xian 710049, Peoples R China
[2] Chengdu Univ Technol, State Key Lab Oil & Gas Reservoir Geol & Exploitat, Chengdu 610059, Peoples R China
[3] China Univ Petr East China, Key Lab Unconvent Oil & Gas Dev, Minist Educ, Qingdao, Peoples R China
[4] China Univ Petr East China, Sch Petr Engn, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
Lattice Boltzmann method; Two-phase displacement; Heat transfer; Phase change; Pore scale; HEAVY OIL; BOUNDARY-CONDITIONS; STEAM INJECTION; 2-PHASE FLOW; SIMULATION; EVAPORATION; MECHANISM; CAPILLARY; DRAINAGE; RECOVERY;
D O I
10.1016/j.icheatmasstransfer.2023.106937
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this work, a hybrid method combining interparticle-potential multiphase LBM, finite difference method and characteristic-line wetting scheme, is developed for pore-scale simulation of superheated vapor displacing liquid, driven by gravity, in a porous geometry. The influence of injected vapor superheat, surface wettability and gravity on two-phase displacement and heat transfer processes is investigated. Results show that in thermal displacement, the vapor-liquid interface is unstable and trapped liquid blobs gradually evaporate into vapor. At low vapor superheat degrees, the displacement efficiency, as compared to isothermal displacement, is signifi-cantly improved, but it reduces as the vapor superheat degree rises due to the shift of displacement patterns. At all contact angles considered, the displacement always exhibits viscous fingering, although vapor flowpaths become wider with increasing surface wettability. The final vapor saturation is insensitive to surface wettability, but reducing contact angle leads to a less even temperature distribution inside vapor and a decrease in final average vapor temperature. In addition, increasing gravity is found to reduce vapor front temperature, but it almost has no effect on final average vapor temperature because the final average vapor temperature does not only depend on specific interfacial length but also on fingering number and inlet flow rate.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Pore-Scale Simulation of Fluid Flow Through Deformable Porous Media Using Immersed Boundary Coupled Lattice Boltzmann Method
    Xinzhu Mou
    Zhenqian Chen
    Transport in Porous Media, 2021, 140 : 743 - 762
  • [32] Pore-Scale Modeling of Spontaneous Imbibition Behavior in a Complex Shale Porous Structure by Pseudopotential Lattice Boltzmann Method
    Zheng, Jiangtao
    Ju, Yang
    Wang, Moran
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2018, 123 (11) : 9586 - 9600
  • [33] Volumetric lattice Boltzmann method for pore-scale mass diffusion-advection process in geopolymer porous structures
    Zhang, Xiaoyu
    Mao, Zirui
    Hilty, Floyd W.
    Li, Yulan
    Grandjean, Agnes
    Montgomery, Robert
    Loye, Hans-Conrad zur
    Yu, Huidan
    Hu, Shenyang
    JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2024, 16 (06)
  • [34] Lattice Boltzmann simulation of three phase reactive flow in random porous media at pore-scale
    Zhang, Da
    Li, Sufen
    Li, Yan
    APPLIED THERMAL ENGINEERING, 2021, 194
  • [35] Pore-scale investigation of gravity effects on phase change heat transfer characteristics using lattice Boltzmann method
    Li, Xinyi
    Ma, Ting
    Liu, Jun
    Zhang, Hao
    Wang, Qiuwang
    APPLIED ENERGY, 2018, 222 : 92 - 103
  • [36] Pore-Scale Investigation of Methane Hydrate Dissociation Using the Lattice Boltzmann Method
    Zhang, Liming
    Zhang, Chuangde
    Zhang, Kai
    Zhang, Lei
    Yao, Jun
    Sun, Hai
    Yang, Yongfei
    WATER RESOURCES RESEARCH, 2019, 55 (11) : 8422 - 8444
  • [37] Reactive transport in porous media for CO2 sequestration: Pore scale modeling using the lattice Boltzmann method
    Gao, Jinfang
    Xing, Huilin
    Tian, Zhiwei
    Pearce, Julie K.
    Sedek, Mohamed
    Golding, Suzanne D.
    Rudolph, Victor
    COMPUTERS & GEOSCIENCES, 2017, 98 : 9 - 20
  • [38] Pore-scale simulations of fluid flow and solute transport in porous media by high-performance Lattice Boltzmann Method
    Zhou H.
    Zheng Y.
    Wu L.
    Chen C.
    Zeng L.
    Zeng, Lingzao (lingzao@zju.edu.cn), 1600, International Research and Training Center on Erosion and Sedimentation and China Water and Power Press (31): : 422 - 432
  • [39] Laboratory validation of lattice Boltzmann method for modeling pore-scale flow in granular materials
    Kutay, Muhammed E.
    Aydilek, Ahmet H.
    Masad, Eyad
    COMPUTERS AND GEOTECHNICS, 2006, 33 (08) : 381 - 395
  • [40] Pore-scale modeling of transverse dispersion in porous media
    Bijeljic, Branko
    Blunt, Martin J.
    WATER RESOURCES RESEARCH, 2007, 43 (12)