Pore-scale modeling of gravity-driven superheated vapor flooding process in porous media using the lattice Boltzmann method

被引:2
|
作者
Diao, Zhenhan [1 ]
Chen, Zixing [1 ]
Liu, Haihu [1 ,2 ]
Wei, Bei [3 ,4 ]
Hou, Jian [3 ,4 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, 28 West Xianning Rd, Xian 710049, Peoples R China
[2] Chengdu Univ Technol, State Key Lab Oil & Gas Reservoir Geol & Exploitat, Chengdu 610059, Peoples R China
[3] China Univ Petr East China, Key Lab Unconvent Oil & Gas Dev, Minist Educ, Qingdao, Peoples R China
[4] China Univ Petr East China, Sch Petr Engn, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
Lattice Boltzmann method; Two-phase displacement; Heat transfer; Phase change; Pore scale; HEAVY OIL; BOUNDARY-CONDITIONS; STEAM INJECTION; 2-PHASE FLOW; SIMULATION; EVAPORATION; MECHANISM; CAPILLARY; DRAINAGE; RECOVERY;
D O I
10.1016/j.icheatmasstransfer.2023.106937
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this work, a hybrid method combining interparticle-potential multiphase LBM, finite difference method and characteristic-line wetting scheme, is developed for pore-scale simulation of superheated vapor displacing liquid, driven by gravity, in a porous geometry. The influence of injected vapor superheat, surface wettability and gravity on two-phase displacement and heat transfer processes is investigated. Results show that in thermal displacement, the vapor-liquid interface is unstable and trapped liquid blobs gradually evaporate into vapor. At low vapor superheat degrees, the displacement efficiency, as compared to isothermal displacement, is signifi-cantly improved, but it reduces as the vapor superheat degree rises due to the shift of displacement patterns. At all contact angles considered, the displacement always exhibits viscous fingering, although vapor flowpaths become wider with increasing surface wettability. The final vapor saturation is insensitive to surface wettability, but reducing contact angle leads to a less even temperature distribution inside vapor and a decrease in final average vapor temperature. In addition, increasing gravity is found to reduce vapor front temperature, but it almost has no effect on final average vapor temperature because the final average vapor temperature does not only depend on specific interfacial length but also on fingering number and inlet flow rate.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] Pore-scale characteristics of multiphase flow in heterogeneous porous media using the lattice Boltzmann method
    Sahar Bakhshian
    Seyyed A. Hosseini
    Nima Shokri
    Scientific Reports, 9
  • [12] Pore-scale numerical investigations of fluid flow in porous media using lattice Boltzmann method
    Gao, Cheng
    Xu, Rui-Na
    Jiang, Pei-Xue
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2015, 25 (08) : 1957 - 1977
  • [13] Pore-scale characteristics of multiphase flow in heterogeneous porous media using the lattice Boltzmann method
    Bakhshian, Sahar
    Hosseini, Seyyed A.
    Shokri, Nima
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [14] Lattice Boltzmann modeling of pore-scale fluid flow through idealized porous media
    Han, Yanhui
    Cundall, Peter A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 67 (11) : 1720 - 1734
  • [15] Wettability alteration implications on pore-scale multiphase flow in porous media using the lattice Boltzmann method
    Nemer, Mohamed N.
    Rao, Parthib R.
    Schaefer, Lara
    ADVANCES IN WATER RESOURCES, 2020, 146
  • [16] Pore-scale investigation on reactive flow in porous media with immiscible phase using lattice Boltzmann method
    Zhou, Xiao
    Xu, Zhiguo
    Xia, Yulei
    Li, Binfei
    Qin, Jie
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 191
  • [17] Pore-scale modeling of rarefied gas flow in fractal micro-porous media, using lattice Boltzmann method (LBM)
    H. Rostamzadeh
    M. R. Salimi
    M. Taeibi-Rahni
    Journal of Thermal Analysis and Calorimetry, 2019, 135 : 1931 - 1942
  • [18] Pore-scale modeling of rarefied gas flow in fractal micro-porous media, using lattice Boltzmann method (LBM)
    Rostamzadeh, H.
    Salimi, M. R.
    Taeibi-Rahni, M.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 135 (03) : 1931 - 1942
  • [19] Pore-scale simulation of drying in porous media using a hybrid lattice Boltzmann: pore network model
    Zhao, Jianlin
    Qin, Feifei
    Kang, Qinjun
    Derome, Dominique
    Carmeliet, Jan
    DRYING TECHNOLOGY, 2022, 40 (04) : 719 - 734
  • [20] Pore-scale numerical simulation of low salinity water flooding using the lattice Boltzmann method
    Akai, Takashi
    Blunt, Martin J.
    Bijeljic, Branko
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 566 : 444 - 453