Improved thermoelectric properties of SiC with TiC segregated network structure

被引:4
作者
Ozer, S. Cagri [1 ]
Arslan, Kartal [1 ]
Turan, Servet [1 ,2 ]
机构
[1] Eskisehir Tech Univ, Fac Engn, Dept Mat Sci & Engn, TR-26555 Eskisehir, Turkiye
[2] Organize Sanayi Bolgesi Teknol Bulvari, MDA Adv Ceram, TR-26250 Eskisehir, Turkiye
关键词
Silicon carbide; Titanium carbide; Thermoelectric; Spark plasma sintering; Network microstructure; POWER-FACTOR ENHANCEMENT; THERMAL-CONDUCTIVITY; SILICON-CARBIDE; ELECTRICAL-CONDUCTIVITY; MECHANICAL-PROPERTIES; P-TYPE; COMPOSITES; PERFORMANCE; CERAMICS; BEHAVIOR;
D O I
10.1016/j.jeurceramsoc.2023.05.050
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A TiC segregated network structure (SNS) approach was utilised to improve the thermoelectric properties of SiC. Different amounts of TiC particles were dry coated on SiC granules to form electrically conductive SNS; then the powder mixtures were spark plasma sintered at 2200 degrees C. The TiC-SNS simultaneously increased the electrical and decreased thermal conductivity of SiC but adversely affected the Seebeck coefficient. By adding 10 vol% TiC, an & AP; 800% increase in electrical conductivity and a & AP;50% decrease in thermal conductivity were achieved, but the Seebeck coefficient deteriorated due to the metallic nature of the material. A maximum ZT of 5.04 x 10-3 was achieved at 923 K, by limiting the Seebeck coefficient's reduction by optimising TiC content to 1.5 vol% while simultaneously increasing the electrical conductivity by & AP;100% and reducing thermal conductivity by & AP;40%. This ZT value is almost 90% higher than any value recorded in the literature for SiC.
引用
收藏
页码:6154 / 6161
页数:8
相关论文
共 58 条
[11]   Key properties of inorganic thermoelectric materials-tables (version 1) [J].
Freer, Robert ;
Ekren, Dursun ;
Ghosh, Tanmoy ;
Biswas, Kanishka ;
Qiu, Pengfei ;
Wan, Shun ;
Chen, Lidong ;
Han, Shen ;
Fu, Chenguang ;
Zhu, Tiejun ;
Shawon, A. K. M. Ashiquzzaman ;
Zevalkink, Alexandra ;
Imasato, Kazuki ;
Snyder, G. Jeffrey ;
Ozen, Melis ;
Saglik, Kivanc ;
Aydemir, Umut ;
Cardoso-Gil, Raul ;
Svanidze, E. ;
Funahashi, Ryoji ;
Powell, Anthony V. ;
Mukherjee, Shriparna ;
Tippireddy, Sahil ;
Vaqueiro, Paz ;
Gascoin, Franck ;
Kyratsi, Theodora ;
Sauerschnig, Philipp ;
Mori, Takao .
JOURNAL OF PHYSICS-ENERGY, 2022, 4 (02)
[12]   Recent advances in thermoelectric materials [J].
Gayner, Chhatrasal ;
Kar, Kamal K. .
PROGRESS IN MATERIALS SCIENCE, 2016, 83 :330-382
[13]  
Guskos N, 2004, REV ADV MATER SCI, V8, P49
[14]   Advances in thermoelectric materials research: Looking back and moving forward [J].
He, Jian ;
Tritt, Terry M. .
SCIENCE, 2017, 357 (6358)
[15]   Keynote Review of Latest Advances in Thermoelectric Generation Materials, Devices, and Technologies 2022 [J].
Hendricks, Terry ;
Caillat, Thierry ;
Mori, Takao .
ENERGIES, 2022, 15 (19)
[16]   Effect of porosity and temperature on thermal conductivity of jennite: A molecular dynamics study [J].
Hong, Song-Nam ;
Yu, Chol-Jun ;
Hwang, Un-Song ;
Kim, Chung-Hyok ;
Ri, Byong-Hyok .
MATERIALS CHEMISTRY AND PHYSICS, 2020, 250
[17]   Carrier grain boundary scattering in thermoelectric materials [J].
Hu, Chaoliang ;
Xia, Kaiyang ;
Fu, Chenguang ;
Zhao, Xinbing ;
Zhu, Tiejun .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (04) :1406-1422
[18]   Thermoelectric properties of vapor-grown polycrystalline cubic SiC [J].
Ivanova, L. M. ;
Aleksandrov, P. A. ;
Demakov, K. D. .
INORGANIC MATERIALS, 2006, 42 (11) :1205-1209
[19]   Analysis of the temperature dependent thermal conductivity of silicon carbide for high temperature applications [J].
Joshi, RP ;
Neudeck, PG ;
Fazi, C .
JOURNAL OF APPLIED PHYSICS, 2000, 88 (01) :265-269
[20]   Preparation of p and n-type SiC-based thermoelectric materials by spark plasma sintering [J].
Kado, N ;
Kitagawa, H ;
Ueda, Y ;
Kanayama, N ;
Noda, Y .
XXI INTERNATIONAL CONFERENCE ON THERMOELECTRICS, PROCEEDINGS ICT '02, 2002, :163-165