Roadmap on the use of artificial intelligence for imaging of vulnerable atherosclerotic plaque in coronary arteries

被引:29
作者
Foellmer, Bernhard [1 ]
Williams, Michelle C. C. [2 ]
Dey, Damini [3 ,4 ]
Arbab-Zadeh, Armin [5 ]
Maurovich-Horvat, Pal [6 ]
Volleberg, Rick H. J. A. [7 ]
Rueckert, Daniel [8 ,9 ]
Schnabel, Julia A. A. [10 ,11 ,12 ]
Newby, David E. E. [2 ]
Dweck, Marc R. R. [2 ]
Guagliumi, Giulio [13 ]
Falk, Volkmar [14 ,15 ,16 ,17 ]
Mezquita, Aldo J. Vazquez J. [1 ]
Biavati, Federico [1 ]
Isgum, Ivana [18 ,19 ,20 ]
Dewey, Marc [1 ,21 ,22 ,23 ]
机构
[1] Charite Univ Med Berlin, Dept Radiol, Berlin, Germany
[2] Univ Edinburgh, Ctr Cardiovasc Sci, Edinburgh, Scotland
[3] Cedars Sinai Med Ctr, Biomed Imaging Res Inst, Los Angeles, CA USA
[4] Cedars Sinai Med Ctr, Dept Imaging Med & Biomed Sci, Los Angeles, CA USA
[5] Johns Hopkins Univ, Sch Med, Dept Med, Div Cardiol, Baltimore, MD USA
[6] Semmelweis Univ, Med Imaging Ctr, Dept Radiol, Budapest, Hungary
[7] Radboud Univ Nijmegen, Med Ctr, Dept Cardiol, Nijmegen, Netherlands
[8] Tech Univ Munich, Artificial Intelligence Med & Healthcare, Munich, Germany
[9] Imperial Coll London, Dept Comp, London, England
[10] Kings Coll London, Sch Biomed Imaging & Imaging Sci, London, England
[11] Helmholtz Munich, Inst Machine Learning Biomed Imaging, Neuherberg, Germany
[12] Tech Univ Munich, Sch Computat Informat & Technol, Munich, Germany
[13] IRCCS Galeazzi St Ambrogio Hosp, Div Cardiol, Milan, Italy
[14] Charite, Dept Cardiothorac & Vasc Surg, Deutsch Herzzentrum Charite, Berlin, Germany
[15] Swiss Fed Inst Technol, Dept Hlth Sci & Technol, Zurich, Switzerland
[16] Berlin Inst Hlth Charite, Berlin, Germany
[17] DZHK German Ctr Cardiovasc Res, Partner Site, Berlin, Germany
[18] Univ Amsterdam, Amsterdam Univ, Med Ctr, Dept Biomed Engn & Phys, Amsterdam, Netherlands
[19] Univ Amsterdam, Dept Radiol & Nucl Med, Amsterdam UMC, Amsterdam, Netherlands
[20] Univ Amsterdam, Informat Inst, Fac Sci, Amsterdam, Netherlands
[21] Berlin Inst Hlth, Campus Charite Mitte, Berlin, Germany
[22] DZHK German Ctr Cardiovasc Res, Partner Site Berlin, Berlin, Germany
[23] Charite Univ Med Berlin, Deutsch Herzzentrum Charite DHZC, Berlin, Germany
基金
英国工程与自然科学研究理事会; 英国惠康基金; 英国医学研究理事会;
关键词
COMPUTED-TOMOGRAPHY ANGIOGRAPHY; OPTICAL COHERENCE TOMOGRAPHY; FRACTIONAL FLOW RESERVE; THIN-CAP FIBROATHEROMA; CT ANGIOGRAPHY; INTRAVASCULAR ULTRASOUND; ADVERSE OUTCOMES; CHEST-PAIN; CARDIAC CT; MACHINE;
D O I
10.1038/s41569-023-00900-3
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In this Roadmap, Follmer et al. summarize the evidence for the application of artificial intelligence (AI) technology to the imaging of vulnerable plaques in coronary arteries and discuss the current and future approaches to addressing the limitations of AI-guided coronary plaque imaging, such as bias, uncertainty and generalizability. Artificial intelligence (AI) is likely to revolutionize the way medical images are analysed and has the potential to improve the identification and analysis of vulnerable or high-risk atherosclerotic plaques in coronary arteries, leading to advances in the treatment of coronary artery disease. However, coronary plaque analysis is challenging owing to cardiac and respiratory motion, as well as the small size of cardiovascular structures. Moreover, the analysis of coronary imaging data is time-consuming, can be performed only by clinicians with dedicated cardiovascular imaging training, and is subject to considerable interreader and intrareader variability. AI has the potential to improve the assessment of images of vulnerable plaque in coronary arteries, but requires robust development, testing and validation. Combining human expertise with AI might facilitate the reliable and valid interpretation of images obtained using CT, MRI, PET, intravascular ultrasonography and optical coherence tomography. In this Roadmap, we review existing evidence on the application of AI to the imaging of vulnerable plaque in coronary arteries and provide consensus recommendations developed by an interdisciplinary group of experts on AI and non-invasive and invasive coronary imaging. We also outline future requirements of AI technology to address bias, uncertainty, explainability and generalizability, which are all essential for the acceptance of AI and its clinical utility in handling the anticipated growing volume of coronary imaging procedures.
引用
收藏
页码:51 / 64
页数:14
相关论文
共 50 条
  • [41] VULNERABLE ATHEROSCLEROTIC PLAQUES OF CORONARY ARTERIES IN PATIENTS WITH STABLE CORONARY ARTERY DISEASE: A 12-MONTH FOLLOW-UP
    Kochergin, N. A.
    Kochergina, A. M.
    Khorlampenko, A. A.
    Ganyukov, V., I
    Shilov, A. A.
    Barbarash, O. L.
    KARDIOLOGIYA, 2020, 60 (02) : 69 - 74
  • [42] Machine Learning for Evaluating Vulnerable Plaque on Coronary Computed Tomography Using Spectral Imaging
    Mochizuki, Junji
    Hata, Yoshiki
    Nakaura, Takeshi
    Hashimoto, Katsushi
    Uetani, Hiroyuki
    Nagayama, Yasunori
    Kidoh, Masafumi
    Funama, Yoshinori
    Hirai, Toshinori
    CIRCULATION REPORTS, 2024, 6 (12) : 564 - 572
  • [43] Noninvasive Imaging to Assess Atherosclerotic Plaque Composition and Disease Activity Coronary and Carotid Applications
    Daghem, Marwa
    Bing, Rong
    Fayad, Zahi A.
    Dweck, Marc R.
    JACC-CARDIOVASCULAR IMAGING, 2020, 13 (04) : 1055 - 1068
  • [44] Artificial Intelligence in Imaging for Personalized Management of Coronary Artery Disease
    Bednarek, Adrian
    Gumiezna, Karolina
    Barus, Piotr
    Kochman, Janusz
    Tomaniak, Mariusz
    JOURNAL OF CLINICAL MEDICINE, 2025, 14 (02)
  • [45] Society of Cardiovascular Computed Tomography / North American Society of Cardiovascular Imaging - Expert Consensus Document on Coronary CT Imaging of Atherosclerotic Plaque
    Shaw, Leslee J.
    Blankstein, Ron
    Bax, Jeroen J.
    Ferencik, Maros
    Bittencourt, Marcio Sommer
    Min, James K.
    Berman, Daniel S.
    Leipsic, Jonathon
    Villines, Todd C.
    Dey, Damini
    Al'Aref, Subhi
    Williams, Michelle C.
    Lin, Fay
    Baskaran, Lohendran
    Litt, Harold
    Litmanovich, Diana
    Cury, Ricardo
    Gianni, Umberto
    van den Hoogen, Inge
    van Rosendael, Alexander R.
    Budoff, Matthew
    Chang, Hyuk-Jae
    Hecht, Harvey E.
    Feuchtner, Gudrun
    Ahmadi, Amir
    Ghoshajra, Brian B.
    Newby, David
    Chandrashekhar, Y. S.
    Narula, Jagat
    JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2021, 15 (02) : 93 - 109
  • [46] Comparative differences in the atherosclerotic disease burden between the epicardial coronary arteries: quantitative plaque analysis on coronary computed tomography angiography
    Bax, A. Maxim
    van Rosendael, Alexander R.
    Ma, Xiaoyue
    van den Hoogen, Inge J.
    Gianni, Umberto
    Tantawy, Sara W.
    Hollenberg, Emma J.
    Andreini, Daniele
    Al-Mallah, Mouaz H.
    Budoff, Matthew J.
    Cademartiri, Filippo
    Chinnaiyan, Kavitha
    Choi, Jung Hyun
    Conte, Edoardo
    Marques, Hugo
    Goncalves, Pedro de Araujo
    Gottlieb, Ilan
    Hadamitzky, Martin
    Leipsic, Jonathon A.
    Maffei, Erica
    Pontone, Gianluca
    Shin, Sanghoon
    Kim, Yong-Jin
    Lee, Byoung Kwon
    Chun, Eun Ju
    Sung, Ji Min
    Lee, Sang-Eun
    Virmani, Renu
    Samady, Habib
    Stone, Peter H.
    Berman, Daniel S.
    Min, James K.
    Narula, Jagat
    Lin, Fay Y.
    Chang, Hyuk-Jae
    Shaw, Leslee J.
    EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2021, 22 (03) : 322 - 330
  • [47] The vulnerable plaque: Current concepts and future perspectives on coronary morphology, composition and wall stress imaging
    Marques, Joao Silva
    Pinto, Fausto J.
    REVISTA PORTUGUESA DE CARDIOLOGIA, 2014, 33 (02) : 101 - 110
  • [48] The Collaborative Community on Ophthalmic Imaging Roadmap for Artificial Intelligence in Age-Related Macular Degeneration
    Dow, Eliot R.
    Keenan, Tiarnan D. L.
    Lad, Eleonora M.
    Lee, Aaron Y.
    Lee, Cecilia S.
    Loewenstein, Anat
    Eydelman, Malvina B.
    Chew, Emily Y.
    Keane, Pearse A.
    Lim, Jennifer, I
    OPHTHALMOLOGY, 2022, 129 (05) : E43 - E59
  • [49] Coronary arterial atherosclerotic plaque imaging by contrast-enhanced computed tomography: Fantasy or reality?
    Akram K.
    Rinehart S.
    Voros S.
    Journal of Nuclear Cardiology, 2008, 15 (6) : 818 - 829
  • [50] On the potential of a new IVUS elasticity modulus imaging approach for detecting vulnerable atherosclerotic coronary plaques: in vitro vessel phantom study
    Le Floc'h, Simon
    Cloutier, Guy
    Finet, Gerard
    Tracqui, Philippe
    Pettigrew, Roderic I.
    Ohayon, Jacques
    PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (19) : 5701 - 5721