Roadmap on the use of artificial intelligence for imaging of vulnerable atherosclerotic plaque in coronary arteries

被引:29
作者
Foellmer, Bernhard [1 ]
Williams, Michelle C. C. [2 ]
Dey, Damini [3 ,4 ]
Arbab-Zadeh, Armin [5 ]
Maurovich-Horvat, Pal [6 ]
Volleberg, Rick H. J. A. [7 ]
Rueckert, Daniel [8 ,9 ]
Schnabel, Julia A. A. [10 ,11 ,12 ]
Newby, David E. E. [2 ]
Dweck, Marc R. R. [2 ]
Guagliumi, Giulio [13 ]
Falk, Volkmar [14 ,15 ,16 ,17 ]
Mezquita, Aldo J. Vazquez J. [1 ]
Biavati, Federico [1 ]
Isgum, Ivana [18 ,19 ,20 ]
Dewey, Marc [1 ,21 ,22 ,23 ]
机构
[1] Charite Univ Med Berlin, Dept Radiol, Berlin, Germany
[2] Univ Edinburgh, Ctr Cardiovasc Sci, Edinburgh, Scotland
[3] Cedars Sinai Med Ctr, Biomed Imaging Res Inst, Los Angeles, CA USA
[4] Cedars Sinai Med Ctr, Dept Imaging Med & Biomed Sci, Los Angeles, CA USA
[5] Johns Hopkins Univ, Sch Med, Dept Med, Div Cardiol, Baltimore, MD USA
[6] Semmelweis Univ, Med Imaging Ctr, Dept Radiol, Budapest, Hungary
[7] Radboud Univ Nijmegen, Med Ctr, Dept Cardiol, Nijmegen, Netherlands
[8] Tech Univ Munich, Artificial Intelligence Med & Healthcare, Munich, Germany
[9] Imperial Coll London, Dept Comp, London, England
[10] Kings Coll London, Sch Biomed Imaging & Imaging Sci, London, England
[11] Helmholtz Munich, Inst Machine Learning Biomed Imaging, Neuherberg, Germany
[12] Tech Univ Munich, Sch Computat Informat & Technol, Munich, Germany
[13] IRCCS Galeazzi St Ambrogio Hosp, Div Cardiol, Milan, Italy
[14] Charite, Dept Cardiothorac & Vasc Surg, Deutsch Herzzentrum Charite, Berlin, Germany
[15] Swiss Fed Inst Technol, Dept Hlth Sci & Technol, Zurich, Switzerland
[16] Berlin Inst Hlth Charite, Berlin, Germany
[17] DZHK German Ctr Cardiovasc Res, Partner Site, Berlin, Germany
[18] Univ Amsterdam, Amsterdam Univ, Med Ctr, Dept Biomed Engn & Phys, Amsterdam, Netherlands
[19] Univ Amsterdam, Dept Radiol & Nucl Med, Amsterdam UMC, Amsterdam, Netherlands
[20] Univ Amsterdam, Informat Inst, Fac Sci, Amsterdam, Netherlands
[21] Berlin Inst Hlth, Campus Charite Mitte, Berlin, Germany
[22] DZHK German Ctr Cardiovasc Res, Partner Site Berlin, Berlin, Germany
[23] Charite Univ Med Berlin, Deutsch Herzzentrum Charite DHZC, Berlin, Germany
基金
英国工程与自然科学研究理事会; 英国惠康基金; 英国医学研究理事会;
关键词
COMPUTED-TOMOGRAPHY ANGIOGRAPHY; OPTICAL COHERENCE TOMOGRAPHY; FRACTIONAL FLOW RESERVE; THIN-CAP FIBROATHEROMA; CT ANGIOGRAPHY; INTRAVASCULAR ULTRASOUND; ADVERSE OUTCOMES; CHEST-PAIN; CARDIAC CT; MACHINE;
D O I
10.1038/s41569-023-00900-3
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In this Roadmap, Follmer et al. summarize the evidence for the application of artificial intelligence (AI) technology to the imaging of vulnerable plaques in coronary arteries and discuss the current and future approaches to addressing the limitations of AI-guided coronary plaque imaging, such as bias, uncertainty and generalizability. Artificial intelligence (AI) is likely to revolutionize the way medical images are analysed and has the potential to improve the identification and analysis of vulnerable or high-risk atherosclerotic plaques in coronary arteries, leading to advances in the treatment of coronary artery disease. However, coronary plaque analysis is challenging owing to cardiac and respiratory motion, as well as the small size of cardiovascular structures. Moreover, the analysis of coronary imaging data is time-consuming, can be performed only by clinicians with dedicated cardiovascular imaging training, and is subject to considerable interreader and intrareader variability. AI has the potential to improve the assessment of images of vulnerable plaque in coronary arteries, but requires robust development, testing and validation. Combining human expertise with AI might facilitate the reliable and valid interpretation of images obtained using CT, MRI, PET, intravascular ultrasonography and optical coherence tomography. In this Roadmap, we review existing evidence on the application of AI to the imaging of vulnerable plaque in coronary arteries and provide consensus recommendations developed by an interdisciplinary group of experts on AI and non-invasive and invasive coronary imaging. We also outline future requirements of AI technology to address bias, uncertainty, explainability and generalizability, which are all essential for the acceptance of AI and its clinical utility in handling the anticipated growing volume of coronary imaging procedures.
引用
收藏
页码:51 / 64
页数:14
相关论文
共 50 条
  • [31] Additive Value of Integrated Backscatter IVUS for Detection of Vulnerable Plaque by Optical Frequency Domain Imaging An Ex Vivo Autopsy Study of Human Coronary Arteries
    Nakano, Masataka
    Yahagi, Kazuyuki
    Yamamoto, Hirosada
    Taniwaki, Masanori
    Otsuka, Fumiyuki
    Ladich, Elena R.
    Joner, Michael
    Virmani, Renu
    JACC-CARDIOVASCULAR IMAGING, 2016, 9 (02) : 163 - 172
  • [32] Porcine models of coronary atherosclerosis and vulnerable plaque for imaging and interventional research
    Granada, Juan F.
    Kaluza, Greg L.
    Wilensky, Robert L.
    Biedermann, Barbara C.
    Schwartz, Robert S.
    Falk, Erling
    EUROINTERVENTION, 2009, 5 (01) : 140 - 148
  • [33] Automated classification of coronary atherosclerotic plaque in optical frequency domain imaging based on deep learning
    Shibutani, Hiroki
    Fujii, Kenichi
    Ueda, Daiju
    Kawakami, Rika
    Imanaka, Takahiro
    Kawai, Kenji
    Matsumura, Koichiro
    Hashimoto, Kenta
    Yamamoto, Akira
    Hao, Hiroyuki
    Hirota, Seiichi
    Miki, Yukio
    Shiojima, Ichiro
    ATHEROSCLEROSIS, 2021, 328 : 100 - 105
  • [34] Coronary atherosclerotic plaque phenotype and physiopathologic mechanisms: Is there an influence of sex? Insights from intracoronary imaging
    Gurgoglione, Filippo Luca
    Solinas, Emilia
    Pfleiderer, Bettina
    Vezzani, Antonella
    Niccoli, Giampaolo
    ATHEROSCLEROSIS, 2023, 384
  • [35] Coronary microvascular function and atherosclerotic plaque burden in ischaemia and no obstructive coronary arteries: a secondary analysis of the CorMicA trial
    Ang, Daniel T. Y.
    Carberry, Jaclyn
    Ford, Thomas J.
    Kamdar, Anna
    Sykes, Robert
    Sidik, Novalia P.
    Carrick, David
    Mccartney, Peter J.
    Collison, Damien
    Robertson, Keith
    Shaukat, Aadil
    Rocchiccioli, J. Paul
    Mcgeoch, R.
    Watkins, Stuart
    Hood, Stuart
    Mcentegart, Margaret
    Lindsay, Mitchell
    Eteiba, Hany
    Oldroyd, Keith G.
    Good, Richard
    Mcconnachie, Alex
    Berry, Colin
    HEART, 2024, : 117 - 124
  • [36] Artificial Intelligence-A Good Assistant to Multi-Modality Imaging in Managing Acute Coronary Syndrome
    Liu, Ming-hao
    Zhao, Chen
    Wang, Shengfang
    Jia, Haibo
    Yu, Bo
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 8
  • [37] Artificial Intelligence Advancements in the Cardiovascular Imaging of Coronary Atherosclerosis
    Covas, Pedro
    De Guzman, Eison
    Barrows, Ian
    Bradley, Andrew J.
    Choi, Brian G.
    Krepp, Joseph M.
    Lewis, Jannet F.
    Katz, Richard
    Tracy, Cynthia M.
    Zeman, Robert K.
    Earls, James P.
    Choi, Andrew D.
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [38] Noninvasive Imaging of Atherosclerotic Plaque Progression Status of Coronary Computed Tomography Angiography
    Sandfort, Veit
    Lima, Joao A. C.
    Bluemke, David A.
    CIRCULATION-CARDIOVASCULAR IMAGING, 2015, 8 (07)
  • [39] Myocardial CT perfusion imaging and atherosclerotic plaque characteristics on coronary CT angiography for the identification of myocardial ischaemia
    Wang, J.
    Chen, H-W
    Fang, X-M
    Qian, P. Y.
    Ding, G-L
    Xu, M-L
    CLINICAL RADIOLOGY, 2019, 74 (10) : 763 - 768
  • [40] Artificial intelligence in imaging of coronary artery disease: current applications and future perspective
    Guo, Bang Jun
    Jeong, Jiwoong Jason
    Qiao, Hong Yan
    Tian, Sibo
    Lei, Yang
    Yang, Xiaofeng
    Zhang, Long Jiang
    Lu, Guang Ming
    CHINESE JOURNAL OF ACADEMIC RADIOLOGY, 2022, 5 (01) : 10 - 19