Roadmap on the use of artificial intelligence for imaging of vulnerable atherosclerotic plaque in coronary arteries

被引:29
作者
Foellmer, Bernhard [1 ]
Williams, Michelle C. C. [2 ]
Dey, Damini [3 ,4 ]
Arbab-Zadeh, Armin [5 ]
Maurovich-Horvat, Pal [6 ]
Volleberg, Rick H. J. A. [7 ]
Rueckert, Daniel [8 ,9 ]
Schnabel, Julia A. A. [10 ,11 ,12 ]
Newby, David E. E. [2 ]
Dweck, Marc R. R. [2 ]
Guagliumi, Giulio [13 ]
Falk, Volkmar [14 ,15 ,16 ,17 ]
Mezquita, Aldo J. Vazquez J. [1 ]
Biavati, Federico [1 ]
Isgum, Ivana [18 ,19 ,20 ]
Dewey, Marc [1 ,21 ,22 ,23 ]
机构
[1] Charite Univ Med Berlin, Dept Radiol, Berlin, Germany
[2] Univ Edinburgh, Ctr Cardiovasc Sci, Edinburgh, Scotland
[3] Cedars Sinai Med Ctr, Biomed Imaging Res Inst, Los Angeles, CA USA
[4] Cedars Sinai Med Ctr, Dept Imaging Med & Biomed Sci, Los Angeles, CA USA
[5] Johns Hopkins Univ, Sch Med, Dept Med, Div Cardiol, Baltimore, MD USA
[6] Semmelweis Univ, Med Imaging Ctr, Dept Radiol, Budapest, Hungary
[7] Radboud Univ Nijmegen, Med Ctr, Dept Cardiol, Nijmegen, Netherlands
[8] Tech Univ Munich, Artificial Intelligence Med & Healthcare, Munich, Germany
[9] Imperial Coll London, Dept Comp, London, England
[10] Kings Coll London, Sch Biomed Imaging & Imaging Sci, London, England
[11] Helmholtz Munich, Inst Machine Learning Biomed Imaging, Neuherberg, Germany
[12] Tech Univ Munich, Sch Computat Informat & Technol, Munich, Germany
[13] IRCCS Galeazzi St Ambrogio Hosp, Div Cardiol, Milan, Italy
[14] Charite, Dept Cardiothorac & Vasc Surg, Deutsch Herzzentrum Charite, Berlin, Germany
[15] Swiss Fed Inst Technol, Dept Hlth Sci & Technol, Zurich, Switzerland
[16] Berlin Inst Hlth Charite, Berlin, Germany
[17] DZHK German Ctr Cardiovasc Res, Partner Site, Berlin, Germany
[18] Univ Amsterdam, Amsterdam Univ, Med Ctr, Dept Biomed Engn & Phys, Amsterdam, Netherlands
[19] Univ Amsterdam, Dept Radiol & Nucl Med, Amsterdam UMC, Amsterdam, Netherlands
[20] Univ Amsterdam, Informat Inst, Fac Sci, Amsterdam, Netherlands
[21] Berlin Inst Hlth, Campus Charite Mitte, Berlin, Germany
[22] DZHK German Ctr Cardiovasc Res, Partner Site Berlin, Berlin, Germany
[23] Charite Univ Med Berlin, Deutsch Herzzentrum Charite DHZC, Berlin, Germany
基金
英国工程与自然科学研究理事会; 英国惠康基金; 英国医学研究理事会;
关键词
COMPUTED-TOMOGRAPHY ANGIOGRAPHY; OPTICAL COHERENCE TOMOGRAPHY; FRACTIONAL FLOW RESERVE; THIN-CAP FIBROATHEROMA; CT ANGIOGRAPHY; INTRAVASCULAR ULTRASOUND; ADVERSE OUTCOMES; CHEST-PAIN; CARDIAC CT; MACHINE;
D O I
10.1038/s41569-023-00900-3
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In this Roadmap, Follmer et al. summarize the evidence for the application of artificial intelligence (AI) technology to the imaging of vulnerable plaques in coronary arteries and discuss the current and future approaches to addressing the limitations of AI-guided coronary plaque imaging, such as bias, uncertainty and generalizability. Artificial intelligence (AI) is likely to revolutionize the way medical images are analysed and has the potential to improve the identification and analysis of vulnerable or high-risk atherosclerotic plaques in coronary arteries, leading to advances in the treatment of coronary artery disease. However, coronary plaque analysis is challenging owing to cardiac and respiratory motion, as well as the small size of cardiovascular structures. Moreover, the analysis of coronary imaging data is time-consuming, can be performed only by clinicians with dedicated cardiovascular imaging training, and is subject to considerable interreader and intrareader variability. AI has the potential to improve the assessment of images of vulnerable plaque in coronary arteries, but requires robust development, testing and validation. Combining human expertise with AI might facilitate the reliable and valid interpretation of images obtained using CT, MRI, PET, intravascular ultrasonography and optical coherence tomography. In this Roadmap, we review existing evidence on the application of AI to the imaging of vulnerable plaque in coronary arteries and provide consensus recommendations developed by an interdisciplinary group of experts on AI and non-invasive and invasive coronary imaging. We also outline future requirements of AI technology to address bias, uncertainty, explainability and generalizability, which are all essential for the acceptance of AI and its clinical utility in handling the anticipated growing volume of coronary imaging procedures.
引用
收藏
页码:51 / 64
页数:14
相关论文
共 50 条
  • [21] Vulnerable atherosclerotic plaque - a review of current concepts and advanced imaging
    Spacek, Miloslav
    Zemanek, David
    Hutyra, Martin
    Sluka, Martin
    Taborsky, Milos
    BIOMEDICAL PAPERS-OLOMOUC, 2018, 162 (01): : 10 - 17
  • [22] Atherosclerotic Coronary Plaque Development Visualized by In Vivo Coronary Imaging
    Sakamoto, Kenji
    Nagamatsu, Suguru
    Yamamoto, Eiichiro
    Kaikita, Koichi
    Tsujita, Kenichi
    CIRCULATION JOURNAL, 2018, 82 (07) : 1727 - 1734
  • [23] Artificial Intelligence Based Multimodality Imaging: A New Frontier in Coronary Artery Disease Management
    Maragna, Riccardo
    Giacari, Carlo Maria
    Guglielmo, Marco
    Baggiano, Andrea
    Fusini, Laura
    Guaricci, Andrea Igoren
    Rossi, Alexia
    Rabbat, Mark
    Pontone, Gianluca
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2021, 8
  • [24] Imaging Features of Vulnerable Carotid Atherosclerotic Plaque and the Associated Clinical Implications
    Vranic, Justin E.
    Romero, Javier M.
    Hatsukami, Thomas S.
    Sun, Jie
    Mossa-Basha, Mahmud
    CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE, 2020, 22 (08)
  • [25] Preventive PCI or medical therapy alone for vulnerable atherosclerotic coronary plaque: Rationale and design of the randomized, controlled PREVENT trial
    Ahn, Jung -Min
    Kang, Do-Yoon
    Lee, Pil Hyung
    Ahn, Young-Keun
    Kim, Won-Jang
    Nam, Chang-Wook
    Jeong, Jin-Ok
    Chae, In -Ho
    Shiomi, Hiroki
    Kao, Paul Hsien Li
    Hahn, Joo-Yong
    Her, Sung -Ho
    Lee, Bong-Ki
    Ahn, Tae Hoon
    Chang, Kiyuk
    Chae, Jei Keon
    Smyth, David
    Stone, Gregg W.
    Park, Duk-Woo
    Park, Seung-Jung
    AMERICAN HEART JOURNAL, 2023, 264 : 83 - 96
  • [26] Intravascular imaging of vulnerable coronary plaque: current and future concepts
    Puri, Rishi
    Worthley, Matthew I.
    Nicholls, Stephen J.
    NATURE REVIEWS CARDIOLOGY, 2011, 8 (03) : 131 - 139
  • [27] Lipoprotein (a) is related to coronary atherosclerotic burden and a vulnerable plaque phenotype in angiographically obstructive coronary artery disease
    Niccoli, Giampaolo
    Chin, Diana
    Scalone, Giancarla
    Panebianco, Mario
    Abbolito, Sofia
    Cosentino, Nicola
    Jacoangeli, Francesca
    Refaat, Hesham
    Gallo, Giovanna
    Salerno, Gerardo
    Volpe, Massimo
    Crea, Filippo
    De Biase, Luciano
    ATHEROSCLEROSIS, 2016, 246 : 214 - 220
  • [28] Data on the lipoprotein (a), coronary atherosclerotic burden and vulnerable plaque phenotype in angiographic obstructive coronary artery disease
    Niccoli, Giampaolo
    Chin, Diana
    Scalone, Giancarla
    Panebianco, Mario
    Abbolito, Sofia
    Cosentino, Nicola
    Jacoangeli, Francesca
    Refaat, Hesham
    Gallo, Giovanna
    Salerno, Gerardo
    Volpe, Massimo
    Crea, Filippo
    De Biase, Luciano
    DATA IN BRIEF, 2016, 7 : 1409 - 1412
  • [29] Intracoronary Imaging of Coronary Atherosclerotic Plaque: From Assessment of Pathophysiological Mechanisms to Therapeutic Implication
    Gurgoglione, Filippo Luca
    Denegri, Andrea
    Russo, Michele
    Calvieri, Camilla
    Benatti, Giorgio
    Niccoli, Giampaolo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (06)
  • [30] Artificial Intelligence-Based Quantitative Coronary Plaque Analysis
    Kwiecinski, Jacek
    JACC-CARDIOVASCULAR IMAGING, 2024, 17 (03) : 281 - 283