Roadmap on the use of artificial intelligence for imaging of vulnerable atherosclerotic plaque in coronary arteries

被引:41
作者
Foellmer, Bernhard [1 ]
Williams, Michelle C. C. [2 ]
Dey, Damini [3 ,4 ]
Arbab-Zadeh, Armin [5 ]
Maurovich-Horvat, Pal [6 ]
Volleberg, Rick H. J. A. [7 ]
Rueckert, Daniel [8 ,9 ]
Schnabel, Julia A. A. [10 ,11 ,12 ]
Newby, David E. E. [2 ]
Dweck, Marc R. R. [2 ]
Guagliumi, Giulio [13 ]
Falk, Volkmar [14 ,15 ,16 ,17 ]
Mezquita, Aldo J. Vazquez J. [1 ]
Biavati, Federico [1 ]
Isgum, Ivana [18 ,19 ,20 ]
Dewey, Marc [1 ,21 ,22 ,23 ]
机构
[1] Charite Univ Med Berlin, Dept Radiol, Berlin, Germany
[2] Univ Edinburgh, Ctr Cardiovasc Sci, Edinburgh, Scotland
[3] Cedars Sinai Med Ctr, Biomed Imaging Res Inst, Los Angeles, CA USA
[4] Cedars Sinai Med Ctr, Dept Imaging Med & Biomed Sci, Los Angeles, CA USA
[5] Johns Hopkins Univ, Sch Med, Dept Med, Div Cardiol, Baltimore, MD USA
[6] Semmelweis Univ, Med Imaging Ctr, Dept Radiol, Budapest, Hungary
[7] Radboud Univ Nijmegen, Med Ctr, Dept Cardiol, Nijmegen, Netherlands
[8] Tech Univ Munich, Artificial Intelligence Med & Healthcare, Munich, Germany
[9] Imperial Coll London, Dept Comp, London, England
[10] Kings Coll London, Sch Biomed Imaging & Imaging Sci, London, England
[11] Helmholtz Munich, Inst Machine Learning Biomed Imaging, Neuherberg, Germany
[12] Tech Univ Munich, Sch Computat Informat & Technol, Munich, Germany
[13] IRCCS Galeazzi St Ambrogio Hosp, Div Cardiol, Milan, Italy
[14] Charite, Dept Cardiothorac & Vasc Surg, Deutsch Herzzentrum Charite, Berlin, Germany
[15] Swiss Fed Inst Technol, Dept Hlth Sci & Technol, Zurich, Switzerland
[16] Berlin Inst Hlth Charite, Berlin, Germany
[17] DZHK German Ctr Cardiovasc Res, Partner Site, Berlin, Germany
[18] Univ Amsterdam, Amsterdam Univ, Med Ctr, Dept Biomed Engn & Phys, Amsterdam, Netherlands
[19] Univ Amsterdam, Dept Radiol & Nucl Med, Amsterdam UMC, Amsterdam, Netherlands
[20] Univ Amsterdam, Informat Inst, Fac Sci, Amsterdam, Netherlands
[21] Berlin Inst Hlth, Campus Charite Mitte, Berlin, Germany
[22] DZHK German Ctr Cardiovasc Res, Partner Site Berlin, Berlin, Germany
[23] Charite Univ Med Berlin, Deutsch Herzzentrum Charite DHZC, Berlin, Germany
基金
英国工程与自然科学研究理事会; 英国医学研究理事会; 英国惠康基金;
关键词
COMPUTED-TOMOGRAPHY ANGIOGRAPHY; OPTICAL COHERENCE TOMOGRAPHY; FRACTIONAL FLOW RESERVE; THIN-CAP FIBROATHEROMA; CT ANGIOGRAPHY; INTRAVASCULAR ULTRASOUND; ADVERSE OUTCOMES; CHEST-PAIN; CARDIAC CT; MACHINE;
D O I
10.1038/s41569-023-00900-3
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In this Roadmap, Follmer et al. summarize the evidence for the application of artificial intelligence (AI) technology to the imaging of vulnerable plaques in coronary arteries and discuss the current and future approaches to addressing the limitations of AI-guided coronary plaque imaging, such as bias, uncertainty and generalizability. Artificial intelligence (AI) is likely to revolutionize the way medical images are analysed and has the potential to improve the identification and analysis of vulnerable or high-risk atherosclerotic plaques in coronary arteries, leading to advances in the treatment of coronary artery disease. However, coronary plaque analysis is challenging owing to cardiac and respiratory motion, as well as the small size of cardiovascular structures. Moreover, the analysis of coronary imaging data is time-consuming, can be performed only by clinicians with dedicated cardiovascular imaging training, and is subject to considerable interreader and intrareader variability. AI has the potential to improve the assessment of images of vulnerable plaque in coronary arteries, but requires robust development, testing and validation. Combining human expertise with AI might facilitate the reliable and valid interpretation of images obtained using CT, MRI, PET, intravascular ultrasonography and optical coherence tomography. In this Roadmap, we review existing evidence on the application of AI to the imaging of vulnerable plaque in coronary arteries and provide consensus recommendations developed by an interdisciplinary group of experts on AI and non-invasive and invasive coronary imaging. We also outline future requirements of AI technology to address bias, uncertainty, explainability and generalizability, which are all essential for the acceptance of AI and its clinical utility in handling the anticipated growing volume of coronary imaging procedures.
引用
收藏
页码:51 / 64
页数:14
相关论文
共 120 条
[1]  
Abbott, 2021, ABB REC FDA CLEAR IT
[2]  
ACR Data Science Institute, 2023, RAD SAMD DASHB
[3]   Machine Learning and Health Care Disparities in Dermatology [J].
Adamson, Adewole S. ;
Smith, Avery .
JAMA DERMATOLOGY, 2018, 154 (11) :1247-1248
[4]   Optical Coherence Tomography of Plaque Vulnerability and Rupture JACC Focus Seminar Part 1/3 [J].
Aguirre, Aaron D. ;
Arbab-Zadeh, Armin ;
Soeda, Tsunenari ;
Fuster, Valentin ;
Jang, Ik-Kyung .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2021, 78 (12) :1257-1265
[5]   A Boosted Ensemble Algorithm for Determination of Plaque Stability in High-Risk Patients on Coronary CTA [J].
Al'Aref, Subhi J. ;
Singh, Gurpreet ;
Choi, Jeong W. ;
Xu, Zhuoran ;
Maliakal, Gabriel ;
van Rosendael, Alexander R. ;
Lee, Benjamin C. ;
Fatima, Zahra ;
Andreini, Daniele ;
Bax, Jeroen J. ;
Cademartiri, Filippo ;
Chinnaiyan, Kavitha ;
Chow, Benjamin J. W. ;
Conte, Edoardo ;
Cury, Ricardo C. ;
Feuchtner, Gudruf ;
Hadamitzky, Martin ;
Kim, Yong-Jin ;
Lee, Sang-Eun ;
Leipsic, Jonathon A. ;
Maffei, Erica ;
Marques, Hugo ;
Plank, Fabian ;
Pontone, Gianluca ;
Raff, Gilbert L. ;
Villines, Todd C. ;
Weirich, Harald G. ;
Cho, Iksung ;
Danad, Ibrahim ;
Han, Donghee ;
Heo, Ran ;
Lee, Ji Hyun ;
Rizvi, Asim ;
Stuijfzand, Wijnand J. ;
Gransar, Heidi ;
Lu, Yao ;
Sung, Ji Min ;
Park, Hyung-Bok ;
Berman, Daniel S. ;
Budoff, Matthew J. ;
Samady, Habib ;
Stone, Peter H. ;
Virmani, Renu ;
Narula, Jagat ;
Chang, Hyuk-Jae ;
Lin, Fay Y. ;
Baskaran, Lohendran ;
Shaw, Leslee J. ;
Min, James K. .
JACC-CARDIOVASCULAR IMAGING, 2020, 13 (10) :2162-2173
[6]   Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging [J].
Al'Aref, Subhi J. ;
Anchouche, Khalil ;
Singh, Gurpreet ;
Slomka, Piotr J. ;
Kolli, Kranthi K. ;
Kumar, Amit ;
Pandey, Mohit ;
Maliakal, Gabriel ;
van Rosendael, Alexander R. ;
Beecy, Ashley N. ;
Berman, Daniel S. ;
Leipsic, Jonathan ;
Nieman, Koen ;
Andreini, Daniele ;
Pontone, Gianluca ;
Schoepf, U. Joseph ;
Shaw, Leslee J. ;
Chang, Hyuk-Jae ;
Narula, Jagat ;
Bax, Jeroen J. ;
Guan, Yuanfang ;
Min, James K. .
EUROPEAN HEART JOURNAL, 2019, 40 (24) :1975-+
[7]  
[Anonymous], 2023, Med Futur
[8]   From Detecting the Vulnerable Plaque to Managing the Vulnerable Patient JACC State-of-the-Art Review [J].
Arbab-Zadeh, Armin ;
Fuster, Valentin .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 74 (12) :1582-1593
[9]   The Myth of the "Vulnerable Plaque" Transitioning From a Focus on Individual Lesions to Atherosclerotic Disease Burden for Coronary Artery Disease Risk Assessment [J].
Arbab-Zadeh, Armin ;
Fuster, Valentin .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2015, 65 (08) :846-855
[10]   Race Correction and the X-Ray Machine - The Controversy over Increased Radiation Doses for Black Americans in 1968 [J].
Bavli, Itai ;
Jones, David S. .
NEW ENGLAND JOURNAL OF MEDICINE, 2022, 387 (10) :947-952