Q-DDCA: Decentralized Dynamic Congestion Avoid Routing in Large-Scale Quantum Networks

被引:14
作者
Chen, Lutong [1 ]
Xue, Kaiping [1 ]
Li, Jian [1 ]
Li, Ruidong [2 ]
Yu, Nenghai [1 ]
Sun, Qibin [1 ]
Lu, Jun [3 ,4 ]
机构
[1] Univ Sci & Technol China, Sch Cyber Sci & Technol, Hefei 230027, Anhui, Peoples R China
[2] Kanazawa Univ, Inst Sci & Engn, Kakuma 9201192, Japan
[3] Univ Sci & Technol China, Sch Cyber Sci & Technol, Hefei 230027, Anhui, Peoples R China
[4] Univ Sci & Technol China, Dept Elect Engn & Informat Sci, Hefei 230027, Anhui, Peoples R China
基金
日本学术振兴会;
关键词
Entanglement distribution; routing algorithm; fidelity; quantum network; KEY DISTRIBUTION; ENTANGLEMENT; PURIFICATION; REPEATERS; TIME;
D O I
10.1109/TNET.2023.3285093
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The quantum network that allows users to communicate in a quantum way will be available in the foreseeable future. The network capable of distributing Bell state entangled pairs faces many challenges due to entanglement decoherence and limited network performance, especially when the network scale is enormous. Many entanglement distribution protocols have been proposed so far, and most of them are in a centralized and synchronized manner, which may be infeasible in large-scale networks. As such, in this paper, we propose a full spontaneous version of quantum networks in which the quantum nodes autonomously manage multiple entanglement distribution requests. However, one major issue is that quantum nodes have little knowledge about the network, especially the congestion (e.g., some nodes may have no usable quantum memories). We present a routing algorithm to adaptive evaluate the congestion on the neighbor nodes to avoid potential congestion. We use SimQN, the new network layer simulation platform built by our research team, to evaluate our proposed design. The result demonstrates that it can adapt to changes in network resources and reduce the drop rate that eventually leads to a higher entanglement distribution rate but remains fair for multiple requests to use the network resources fairly and achieve a more balanced throughput.
引用
收藏
页码:368 / 381
页数:14
相关论文
共 56 条
[1]   Secure NFV Orchestration Over an SDN-Controlled Optical Network With Time-Shared Quantum Key Distribution Resources [J].
Aguado, Alejandro ;
Hugues-Salas, Emilio ;
Haigh, Paul Anthony ;
Marhuenda, Jaume ;
Price, Alasdair B. ;
Sibson, Philip ;
Kennard, Jake E. ;
Erven, Chris ;
Rarity, John G. ;
Thompson, Mark Gerard ;
Lord, Andrew ;
Nejabati, Reza ;
Simeonidou, Dimitra .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2017, 35 (08) :1357-1362
[2]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[3]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[4]   Quantum cryptography: Public key distribution and coin tossing [J].
Bennett, Charles H. ;
Brassard, Gilles .
THEORETICAL COMPUTER SCIENCE, 2014, 560 :7-11
[5]   Efficient Computation of the Waiting Time and Fidelity in Quantum Repeater Chains [J].
Brand, Sebastiaan ;
Coopmans, Tim ;
Elkouss, David .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (03) :619-639
[6]   Quantum repeaters:: The role of imperfect local operations in quantum communication [J].
Briegel, HJ ;
Dür, W ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (26) :5932-5935
[7]   When Entanglement Meets Classical Communications: Quantum Teleportation for the Quantum Internet [J].
Cacciapuoti, Angela Sara ;
Caleffi, Marcello ;
Van Meter, Rodney ;
Hanzo, Lajos .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (06) :3808-3833
[8]   Quantum Internet: Networking Challenges in Distributed Quantum Computing [J].
Cacciapuoti, Angela Sara ;
Caleffi, Marcello ;
Tafuri, Francesco ;
Cataliotti, Francesco Saverio ;
Gherardini, Stefano ;
Bianchi, Giuseppe .
IEEE NETWORK, 2020, 34 (01) :137-143
[9]   Quantum Internet: from Communication to Distributed Computing! [J].
Caleffi, Marcello ;
Cacciapuoti, Angela Sara ;
Bianchi, Giuseppe .
ACM NANOCOM 2018: 5TH ACM INTERNATIONAL CONFERENCE ON NANOSCALE COMPUTING AND COMMUNICATION, 2018,
[10]   Entanglement Distribution in a Quantum Network: A Multicommodity Flow-Based Approach [J].
Chakraborty, Kaushik ;
Elkouss, David ;
Rijsman, Bruno ;
Wehner, Stephanie .
IEEE TRANSACTIONS ON QUANTUM ENGINEERING, 2020, 1