Stress Corrosion Cracking of 316L Stainless Steel Additively Manufactured with Sinter-Based Material Extrusion

被引:5
|
作者
Santamaria, Ricardo [1 ]
Wang, Ke [1 ]
Salasi, Mobin [1 ]
Iannuzzi, Mariano [1 ]
Mendoza, Michael Y. [2 ]
Quadir, Md Zakaria [1 ,3 ,4 ]
机构
[1] Curtin Univ, Curtin Corros Ctr, Perth, WA 6102, Australia
[2] Univ Austral Chile, Inst Naval & Maritime Sci, Valdivia 5090000, Los Rios, Chile
[3] Curtin Univ, John Laeter Ctr, Perth, WA 6845, Australia
[4] Alcoa Corp, POB 252, Applecross, WA 6953, Australia
关键词
chloride stress corrosion cracking (CSCC); crack-branching; C-ring specimen; porosity; residual stresses; transgranular cracking; MECHANICAL-PROPERTIES; PROCESS PARAMETERS; PITTING CORROSION; MICROSTRUCTURE; BEHAVIOR; EVOLUTION; TRANSITION; INITIATION; POROSITY; MODEL;
D O I
10.3390/ma16114006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study investigates the stress corrosion cracking (SCC) behavior of type 316L stainless steel (SS316L) produced with sinter-based material extrusion additive manufacturing (AM). Sinter-based material extrusion AM produces SS316L with microstructures and mechanical properties comparable to its wrought counterpart in the annealed condition. However, despite extensive research on SCC of SS316L, little is known about the SCC of sinter-based AM SS316L. This study focuses on the influence of sintered microstructures on SCC initiation and crack-branching susceptibility. Custom-made C-rings were exposed to different stress levels in acidic chloride solutions at various temperatures. Solution-annealed (SA) and cold-drawn (CD) wrought SS316L were also tested to understand the SCC behavior of SS316L better. Results showed that sinter-based AM SS316L was more susceptible to SCC initiation than SA wrought SS316L but more resistant than CD wrought SS316L, as determined by the crack initiation time. Sinter-based AM SS316L showed a noticeably lower tendency for crack-branching than both wrought SS316L counterparts. The investigation was supported by comprehensive pre- and post-test microanalysis using light optical microscopy, scanning electron microscopy, electron backscatter diffraction, and micro-computed tomography.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Deformation and Fracture Behavior of Additively Manufactured 316L Stainless Steel
    Thak Sang Byun
    Maxim N. Gussev
    Timothy G. Lach
    JOM, 2024, 76 : 362 - 378
  • [42] The effect of printing parameters on sintered properties of extrusion-based additively manufactured stainless steel 316L parts
    Waqar Hassan
    Muhammad Asad Farid
    Anna Tosi
    Kedarnath Rane
    Matteo Strano
    The International Journal of Advanced Manufacturing Technology, 2021, 114 : 3057 - 3067
  • [43] The effect of printing parameters on sintered properties of extrusion-based additively manufactured stainless steel 316L parts
    Hassan, Waqar
    Farid, Muhammad Asad
    Tosi, Anna
    Rane, Kedarnath
    Strano, Matteo
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 114 (9-10): : 3057 - 3067
  • [44] On the unusual intergranular corrosion resistance of 316L stainless steel additively manufactured by selective laser melting
    Laleh, Majid
    Hughes, Anthony E.
    Xu, Wei
    Haghdadi, Nima
    Wang, Ke
    Cizek, Pavel
    Gibson, Ian
    Tan, Mike Yongjun
    CORROSION SCIENCE, 2019, 161
  • [45] Dislocation microstructure and its influence on corrosion behavior in laser additively manufactured 316L stainless steel
    Sprouster, David J.
    Cunningham, W. Streit
    Halada, Gary P.
    Yan, Hanfei
    Pattammattel, Ajith
    Huang, Xiaojing
    Olds, Daniel
    Tilton, Maryam
    Chu, Yong S.
    Dooryhee, Eric
    Manogharan, Guha P.
    Trelewicz, Jason R.
    ADDITIVE MANUFACTURING, 2021, 47
  • [46] Additively manufactured 316L stainless steel with improved corrosion resistance and biological response for biomedical applications
    Lodhi, M. J. K.
    Deen, K. M.
    Greenlee-Wacker, M. C.
    Haider, Waseem
    ADDITIVE MANUFACTURING, 2019, 27 : 8 - 19
  • [47] Investigation of the irradiation effects in additively manufactured 316L steel resulting in decreased irradiation assisted stress corrosion cracking susceptibility
    McMurtrey, M.
    Sun, C.
    Rupp, R.E.
    Shiau, C.-H.
    Hanbury, R.
    Jerred, N.
    O'Brien, R.
    Journal of Nuclear Materials, 2021, 545
  • [48] Investigation of the irradiation effects in additively manufactured 316L steel resulting in decreased irradiation assisted stress corrosion cracking susceptibility
    McMurtrey, M.
    Sun, C.
    Rupp, R. E.
    Shiau, C. -H.
    Hanbury, R.
    Jerred, N.
    O'Brien, R.
    JOURNAL OF NUCLEAR MATERIALS, 2021, 545
  • [49] Mechanisms controlling fracture toughness of additively manufactured stainless steel 316L
    Deepak Kumar
    Suyog Jhavar
    Abhinav Arya
    K. G. Prashanth
    Satyam Suwas
    International Journal of Fracture, 2022, 235 : 61 - 78
  • [50] High Strength and Ductility of Additively Manufactured 316L Stainless Steel Explained
    Shamsujjoha, Md.
    Agnew, Sean R.
    Fitz-Gerald, James M.
    Moore, William R.
    Newman, Tabitha A.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2018, 49A (07): : 3011 - 3027