Stress Corrosion Cracking of 316L Stainless Steel Additively Manufactured with Sinter-Based Material Extrusion

被引:5
作者
Santamaria, Ricardo [1 ]
Wang, Ke [1 ]
Salasi, Mobin [1 ]
Iannuzzi, Mariano [1 ]
Mendoza, Michael Y. [2 ]
Quadir, Md Zakaria [1 ,3 ,4 ]
机构
[1] Curtin Univ, Curtin Corros Ctr, Perth, WA 6102, Australia
[2] Univ Austral Chile, Inst Naval & Maritime Sci, Valdivia 5090000, Los Rios, Chile
[3] Curtin Univ, John Laeter Ctr, Perth, WA 6845, Australia
[4] Alcoa Corp, POB 252, Applecross, WA 6953, Australia
关键词
chloride stress corrosion cracking (CSCC); crack-branching; C-ring specimen; porosity; residual stresses; transgranular cracking; MECHANICAL-PROPERTIES; PROCESS PARAMETERS; PITTING CORROSION; MICROSTRUCTURE; BEHAVIOR; EVOLUTION; TRANSITION; INITIATION; POROSITY; MODEL;
D O I
10.3390/ma16114006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study investigates the stress corrosion cracking (SCC) behavior of type 316L stainless steel (SS316L) produced with sinter-based material extrusion additive manufacturing (AM). Sinter-based material extrusion AM produces SS316L with microstructures and mechanical properties comparable to its wrought counterpart in the annealed condition. However, despite extensive research on SCC of SS316L, little is known about the SCC of sinter-based AM SS316L. This study focuses on the influence of sintered microstructures on SCC initiation and crack-branching susceptibility. Custom-made C-rings were exposed to different stress levels in acidic chloride solutions at various temperatures. Solution-annealed (SA) and cold-drawn (CD) wrought SS316L were also tested to understand the SCC behavior of SS316L better. Results showed that sinter-based AM SS316L was more susceptible to SCC initiation than SA wrought SS316L but more resistant than CD wrought SS316L, as determined by the crack initiation time. Sinter-based AM SS316L showed a noticeably lower tendency for crack-branching than both wrought SS316L counterparts. The investigation was supported by comprehensive pre- and post-test microanalysis using light optical microscopy, scanning electron microscopy, electron backscatter diffraction, and micro-computed tomography.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Corrosion behavior of additively manufactured 316L stainless steel in acidic media
    Lodhi, M. J. K.
    Deen, K. M.
    Haider, Waseem
    MATERIALIA, 2018, 2 : 111 - 121
  • [22] Microstructure and Corrosion Resistance of Laser Additively Manufactured 316L Stainless Steel
    Trelewicz, Jason R.
    Halada, Gary P.
    Donaldson, Olivia K.
    Manogharan, Guha
    JOM, 2016, 68 (03) : 850 - 859
  • [23] Structure/property (constitutive and spallation response) of additively manufactured 316L stainless steel
    Gray, G. T., III
    Livescu, V.
    Rigg, P. A.
    Trujillo, C. P.
    Cady, C. M.
    Chen, S. R.
    Carpenter, J. S.
    Lienert, T. J.
    Fensin, S. J.
    ACTA MATERIALIA, 2017, 138 : 140 - 149
  • [24] Additively manufactured 316L stainless steel with improved corrosion resistance and biological response for biomedical applications
    Lodhi, M. J. K.
    Deen, K. M.
    Greenlee-Wacker, M. C.
    Haider, Waseem
    ADDITIVE MANUFACTURING, 2019, 27 : 8 - 19
  • [25] Investigation of the irradiation effects in additively manufactured 316L steel resulting in decreased irradiation assisted stress corrosion cracking susceptibility
    McMurtrey, M.
    Sun, C.
    Rupp, R. E.
    Shiau, C. -H.
    Hanbury, R.
    Jerred, N.
    O'Brien, R.
    JOURNAL OF NUCLEAR MATERIALS, 2021, 545
  • [26] Dislocation microstructure and its influence on corrosion behavior in laser additively manufactured 316L stainless steel
    Sprouster, David J.
    Cunningham, W. Streit
    Halada, Gary P.
    Yan, Hanfei
    Pattammattel, Ajith
    Huang, Xiaojing
    Olds, Daniel
    Tilton, Maryam
    Chu, Yong S.
    Dooryhee, Eric
    Manogharan, Guha P.
    Trelewicz, Jason R.
    ADDITIVE MANUFACTURING, 2021, 47
  • [27] Mechanisms controlling fracture toughness of additively manufactured stainless steel 316L
    Kumar, Deepak
    Jhavar, Suyog
    Arya, Abhinav
    Prashanth, K. G.
    Suwas, Satyam
    INTERNATIONAL JOURNAL OF FRACTURE, 2022, 235 (01) : 61 - 78
  • [28] Corrosion behaviour of 316L stainless steel manufactured by selective laser melting
    Andreatta, Francesco
    Lanzutti, Alex
    Vaglio, Emanuele
    Totis, Giovanni
    Sortino, Marco
    Fedrizzi, Lorenzo
    MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2019, 70 (09): : 1633 - 1645
  • [29] Machine-to-machine variability of roughness and corrosion in additively manufactured 316L stainless steel
    Clark, C. L.
    Karasz, E. K.
    Melia, M.
    Hooks, D. E.
    Hackenberg, R.
    Colon-Mercado, H.
    Ganesan, P.
    Renner, P.
    Cho, S.
    Wu, M.
    Qiu, S. R.
    Dwyer, J.
    Rueger, Z.
    Gorey, T. J.
    Koehn, Z.
    Stull, J. A.
    JOURNAL OF MANUFACTURING PROCESSES, 2023, 106 : 380 - 392
  • [30] Influence of native oxide film on corrosion behavior of additively manufactured stainless steel 316L
    Choundraj, Jahnavi Desai
    Kelly, Robert G.
    Monikandan, Rebhadevi
    Singh, Preet M.
    Kacher, Josh
    CORROSION SCIENCE, 2023, 217