Ultrathin and Flexible Ultrawideband Antenna Array Based on Integrated Impedance Matching Line

被引:11
作者
Chen, Xi [1 ,2 ]
Li, Kai [1 ,2 ]
机构
[1] Xidian Univ, Natl Key Lab Antennas & Microwave Technol, Xian 710071, Peoples R China
[2] Xidian Univ, Collaborat Innovat Ctr Informat Sensing & Understa, Xian 710071, Peoples R China
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2023年 / 22卷 / 05期
基金
中国国家自然科学基金;
关键词
Flexible; frequency selective surface (FSS); low profile; tightly coupled dipole array (TCDA); wideband;
D O I
10.1109/LAWP.2022.3229108
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we propose a method to realize an ultrathin and flexible ultrawideband (UWB) antenna array. The array element integrates an UWB impedance matching line into the antenna radiation patch to replace the conventional vertical feed structure of the UWB antenna array, enabling the entire antenna radiation layer to be ultrathin and flexible. A stretchable honeycomb layer with a low dielectric constant is used to support the radiation layer and make it easy to be conformal. In addition, the antenna adopts an ultrathin bendable dielectric substrate to achieve UWB directional radiation properties. In the substrate structure, a high-pass frequency selective surface is designed to improve the radiation efficiency, particularly at the low-frequency band. Finally, the overall UWB antenna array structure can be made ultrathin, flexible, and bendable by using multilayer lamination. To verify this method, a 6 x 6 array antenna prototype was fabricated and measured. The measured results confirm that the proposed method achieves a bandwidth of 2-18 GHz with active voltage standing wave ratio (VSWR) < 2.5 and the profile of the entire antenna is only 0.047 lambda(L), where lambda(L) denotes the free-space wavelength at the lowest operating frequency. After flexible conforming, the antenna can still maintain stable electrical properties.
引用
收藏
页码:960 / 964
页数:5
相关论文
共 15 条
  • [1] A Wideband Low-Profile Tightly Coupled Antenna Array With a Very High Figure of Merit
    Bah, Alpha O.
    Qin, Pei-Yuan
    Ziolkowski, Richard W.
    Guo, Y. Jay
    Bird, Trevor S.
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2019, 67 (04) : 2332 - 2343
  • [2] Du Z.-M., IEEE T ANTENN PROPAG, DOI [10.1109/TAP.2021.3138508, DOI 10.1109/TAP.2021.3138508]
  • [3] Dual-polarised wideband tightly coupled dipole array for airborne applications
    Johnson, Alexander Dale
    Zhong, Jingni
    Sekelsky, Stephen
    Alwan, Elias A.
    Volakis, John L.
    [J]. IET MICROWAVES ANTENNAS & PROPAGATION, 2020, 14 (12) : 1476 - 1480
  • [4] Kasemodel J. A., 2019, PROC IEEE INT S PHAS, P1, DOI 10.1109/PAST43306.2019.9020924
  • [5] Munk BA., 2000, FREQUENCY SELECTIVE
  • [6] Ruggedized Surface-Mount Omnidirectional Antenna for Supersonic Aerial Platforms
    Nawaz, Hamza
    Liang, Xianling
    Sadiq, Muhammad Shahzad
    Abbasi, Muhammad Ali Babar
    [J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2020, 19 (08): : 1439 - 1442
  • [7] Dual-Polarized Tightly Coupled Array With Substrate Loading
    Papantonis, Dimitrios K.
    Volakis, John L.
    [J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2016, 15 : 325 - 328
  • [8] A Method to Realize Robust Flexible Electronically Tunable Antennas Using Polymer-Embedded Conductive Fabric
    Simorangkir, Roy B. V. B.
    Yang, Yang
    Esselle, Karu P.
    Zeb, Basit A.
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2018, 66 (01) : 50 - 58
  • [9] Sorrentino R., 2010, MICROWAVE RF ENG
  • [10] TAI CT, 1976, IEEE T ANTENN PROPAG, V24, P235